Accès libre

Virtual Machining of Total Knee Replacement Products Based on Finite Element Analysis (FEA) and Re-Design Optimization by ISO 14243

, , , , , ,  et   
27 avr. 2025
À propos de cet article

Citez
Télécharger la couverture

X.-H. Wang, H. Li, X. Dong, F. Zhao, C.-K. Cheng, ‘Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses’, Clinical Biomechanics, vol. 63, pp. 34-40, 2019, doi: 10.1016/j.clinbiomech.2019.02.008. Search in Google Scholar

P.F. Sharkey, P.M. Lichstein, C. Shen, A.T. Tokarski, J. Parvizi, ‘Why Are Total Knee Arthroplasties Failing Today – Has Anything Changed After 10 Years?’, J Arthroplasty, vol. 29, no. 9, pp. 1774-1778, 2014, doi: 10.1016/j.arth.2013.07.024. Search in Google Scholar

D. Darmanto, R. Novriansyah, P. W. Anggoro, R. Ismail, J. Jamari, A. P. Bayuseno, ‘A review on flexion angle in high-flexion total knee arthroplasty for indonesian’s need’, Front Mech Eng, vol. 8, 2022, doi: 10.3389/fmech.2022.1049796. Search in Google Scholar

M. Hoffman, ‘Anatomy of the Knee’, https://www.webmd.com/pain-management/knee-pain/knee-pain-overview. Search in Google Scholar

Orthoinfo. Revision, ‘Revision Total Knee Replacement’, https://orthoinfo.aaos.org/en/treatment/revision-total-knee-replacement/. Search in Google Scholar

Y. Sandeep Kumar, R. Rao KVS, S.R. Yalamalle, S.M. Venugopal, S. Krishna, ‘Applications of 3D printing in TKR Pre surgical planning for Design Optimization – A Case Study’, Mater Today Proc, vol. 5, no. 9, pp. 18833-18838, 2018, doi: 10.1016/j.matpr.2018.06.230. Search in Google Scholar

A.H. Saputro, T. Hidayat, ‘Analisa Poros Alat Uji Keausan Untuk Sistem Kontak Two-Disc Dengan Menggunakan Metode Elemen HINGGA’, Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 8, no. 1, pp. 283-290, 2017, doi: 10.24176/simet.v8i1.962. Search in Google Scholar

Y. Setyoadi, R. Ismail, J. Jamari, A.P. Bayuseno, R. Novriansyah, H. Prawibowo, ‘Reverse Engineering Artificial Knee Joint using 3D Scanning’, 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), 2023, doi: 10.1109/ibitec59006.2023.10390918. Search in Google Scholar

F. Djoudi, ‘3D reconstruction of bony elements of the knee joint and finite element analysis of total knee prosthesis obtained from the reconstructed model’, J Orthop, vol. 10, no. 4, pp. 155-161, 2013, doi: 10.1016/j.jor.2013.09.009. Search in Google Scholar

Y.-G. Koh, J.-A. Lee, K.-T. Kang, ‘Prediction of Wear on Tibial Inserts Made of UHMWPE, PEEK, and CFR-PEEK in Total Knee Arthroplasty Using Finite-Element Analysis’, Lubricants, vol. 7, no. 4, p. 30, Apr. 2019, doi: 10.3390/lubricants7040030. Search in Google Scholar

X.-H. Wang, H. Li, X. Dong, F. Zhao, C.-K. Cheng, ‘Comparison of ISO 14243-1 to ASTM F3141 in terms of wearing of knee prostheses’, Clinical Biomechanics, vol. 63, pp. 34-40, 2019, doi: 10.1016/j.clinbiomech.2019.02.008. Search in Google Scholar

H. Prawibowo, F.T. Putri, R. Ismail, M. Tauviqirrahman, R. Novriansyah, Y. Setyoadi, ‘Finite Element Analysis on a Bionic Foot Prosthesis Model during Walking Gait Phases’, 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), 2023, doi: 10.1109/ibitec59006.2023.10390945. Search in Google Scholar

FDA, ‘https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/knee-joint-patellofemorotibial-andfemorotibial-metalpolymer-porous-coated-uncementedprostheses’, FDA. Search in Google Scholar

Endolab, ‘https://www.endolab.org/simulator-knee-implants.asp’, Endolab. Search in Google Scholar

G. Bergmann et al., ‘Standardized Loads Acting in Knee Implants’, PLoS One, vol. 9, no. 1, p. e86035, Jan. 2014, doi: 10.1371/journal.pone.0086035. Search in Google Scholar

Y. Setyoadi, R. Ismail, J. Jamari, A.P. Bayuseno, R. Novriansyah, H. Prawibowo, ‘Reverse Engineering Artificial Knee Joint using 3D Scanning’, 2023 IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), 2023, doi: 10.1109/ibitec59006.2023.10390918. Search in Google Scholar

B. Innocenti, L. Labey, A. Kamali, W. Pascale, S. Pianigiani, ‘Development and Validation of a Wear Model to Predict Polyethylene Wear in a Total Knee Arthroplasty: A Finite Element Analysis’, Lubricants, vol. 2, no. 4, pp. 193-205, Nov. 2014, doi: 10.3390/lubricants2040193. Search in Google Scholar

T. Otani, L.A. Whiteside, S.E. White, D.S. McCarthy, ‘Effects of femoral component material properties on cementless fixation in total hip arthroplasty’, J Arthroplasty, vol. 8, no. 1, pp. 67-74, Feb. 1993, doi: 10.1016/S0883-5403(06)80110-5. Search in Google Scholar

B. Gervais, A. Vadean, M. Raison, M. Brochu, ‘Failure analysis of a 316L stainless steel femoral orthopedic implant’, Case Stud Eng Fail Anal, vol. 5-6, pp. 30-38, Apr. 2016, doi: 10.1016/j.csefa.2015.12.001. Search in Google Scholar

A. Markopoulos, N. Galanis, N. Karkalos, D. Manolakos, ‘Precision CNC Machining of Femoral Component of Knee Implant: A Case Study’, Machines, vol. 6, no. 1, p. 10, Mar. 2018, doi: 10.3390/machines6010010. Search in Google Scholar

L. Bauer et al., ‘Different ISO standards’ wear kinematic profiles change the TKA inlay load’, Applied Sciences (Switzerland), vol. 11, no. 7, Apr. 2021, doi: 10.3390/app11073161. Search in Google Scholar

X.H. Wang et al., ‘The impact of variations in input directions according to ISO 14243 on wearing of knee prostheses’, PLoS One, vol. 13, no. 10, Oct. 2018, doi: 10.1371/journal.pone.0206496. Search in Google Scholar

A.P. Markopoulos, N.I. Galanis, N.E. Karkalos, D.E. Manolakos, ‘Precision CNC machining of femoral component of knee implant: A case study’, Machines, vol. 6, no. 1, 2018, doi: 10.3390/MACHINES6010010. Search in Google Scholar

M.A. Kumbhalkar, P.H. Jaiswal, H.M. Bansod, ‘Design and manufacturing of knee joint by CAD/CAM and rapid prototyping’, Journal of the Institution of Engineers (India): Mechanical Engineering Division, vol. 92, no. APRIL, pp. 25-28, 2011. Search in Google Scholar