Accès libre

3D Printed Stent from Graphene-Polyethylene Glycol Diacrylate Using Digital Light Processing Technique

 et   
09 nov. 2024
À propos de cet article

Citez
Télécharger la couverture

E.L. Boland, R. Shine, N. Kelly, C.A. Sweeney, and P.E. McHugh, “A Review of Material Degradation Modelling for the Analysis and Design of Bioabsorbable Stents,” Ann. Biomed. Eng., vol. 44, no. 2, pp. 341-356, 2016, doi: 10.1007/s10439-015-1413-5. Search in Google Scholar

D. Garlotta, “A Literature Review of Poly ( Lactic Acid ),” J. Polym. Environ., vol. 9, no. 2, pp. 63-84, 2002, doi: 10.1023/A:1020200822435. Search in Google Scholar

R. van Lith et al., “3D-Printing Strong High-Resolution Antioxidant Bioresorbable Vascular Stents,” Adv. Mater. Technol., vol. 1, no. 9, pp. 1-7, 2016, doi: 10.1002/admt.201600138. Search in Google Scholar

M.F. De Oliveira, L.C.E. Silva, and M.G. De Oliveira, “Bioprinting 3D printed bioresorbable nitric oxide-releasing vascular stents,” Bioprinting, vol. 22, no. December 2020, p. e00137, 2021, doi: 10.1016/j.bprint.2021.e00137. Search in Google Scholar

R.D. Alexy and D.S. Levi, “Materials and Manufacturing Technologies Available for Production of a Pediatric Bioabsorbable Stent,” vol. 2013, 2013. Search in Google Scholar

A.W. Martinez and E.L. Chaikof, “Microfabrication and Nanotechnology in Stent Design,” Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, vol. 76, no. October 2009, pp. 211–220, 2012, doi: 10.1007/s11103-011-9767-z.Plastid. Search in Google Scholar

N. Muhammad, “Laser Micromachining of Coronary Stents for Medical Applications,” University of Manchester, 2012. Search in Google Scholar

N. Grabow, M. Schlun, K. Sternberg, N. Hakansson, S. Kramer, and K.-P. Schmitz, “Mechanical Properties of Laser Cut Poly(L-Lactide) Micro-Specimens: Implications for Stent Design, Manufacture, and Sterilization,” J. Biomech. Eng., vol. 127, no. 1, pp. 25-31, 2005, doi: 10.1115/1.1835349. Search in Google Scholar

A. J. Guerra and J. Ciurana, “Effect of fi bre laser process on in-vitro degradation rate of a polycaprolactone stent a novel degradation study method,” Polym. Degrad. Stab., vol. 142, pp. 42-49, 2017, doi: 10.1016/j.polymdegradstab.2017.05.028. Search in Google Scholar

M. Lalegani Dezaki, M. K. A. Mohd Ariffin, and S. Hatami, “An overview of fused deposition modelling (FDM): research, development and process optimisation,” Rapid Prototyp. J., vol. 27, no. 3, pp. 562-582, 2021, doi: https://doi.org/10.1108/RPJ-08-2019-0230. Search in Google Scholar

R.F. Quero, G. Domingos da Silveira, J.A. Fracassi da Silva, and D.P. de Jesus, “Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices,” Lab Chip, vol. 21, no. 19, pp. 3715-3729, 2021, doi: 10.1039/D1LC00518A. Search in Google Scholar

S. Deng, J. Wu, M. D. Dickey, Q. Zhao, and T. Xie, “Rapid Open-Air Digital Light 3D Printing of Thermoplastic Polymer,” Adv. Mater., vol. 31, no. 39, pp. 1-7, 2019, doi: 10.1002/adma.201903970. Search in Google Scholar

J. Fei et al., “Progress in Photocurable 3D Printing of Photosensitive Polyurethane: A Review,” Macromol. Rapid Commun., vol. 44, no. 18, p. 2300211, Sep. 2023, doi: https://doi.org/10.1002/marc.202300211. Search in Google Scholar

H.O.T. Ware et al., “High-speed on-demand 3D printed bioresorbable vascular scaffolds,” Mater. Today Chem., vol. 7, pp. 25-34, 2018, doi: 10.1016/j.mtchem.2017.10.002. Search in Google Scholar

S.K. Misra et al., “3D-Printed Multidrug-Eluting Stent from Graphene-Nanoplatelet-Doped Biodegradable Polymer Composite,” Adv. Healthc. Mater., pp. 1-14, 2017, doi: 10.1002/adhm.201700008. Search in Google Scholar

H. Jia, S.Y. Gu, and K. Chang, “3D printed self-expandable vascular stents from biodegradable shape memory polymer,” Adv. Polym. Technol., vol. 37, no. 8, pp. 3222-3228, 2018, doi: 10.1002/adv.22091. Search in Google Scholar

T. Qiu, W. Jiang, P. Yan, L. Jiao, and X. Wang, “Development of 3D-Printed Sulfated Chitosan Modified Bioresorbable Stents for Coronary Artery Disease,” Front. Bioeng. Biotechnol., vol. 8, no. May, pp. 1-12, 2020, doi: 10.3389/fbioe.2020.00462. Search in Google Scholar

C. Schmidleithner and D.M. Kalaskar, “Stereolithography,” in 3D Printing, Intechopen, 2018, pp. 3-22. Search in Google Scholar

C. Mendes-Felipe, J. Oliveira, I. Etxebarria, J.L. Vilas-Vilela, and S. Lanceros-Mendez, “State-of-the-Art and Future Challenges of UV Curable Polymer-Based Smart Materials for Printing Technologies,” Adv. Mater. Technol., vol. 4, no. 3, pp. 1-16, 2019, doi: 10.1002/admt.201800618. Search in Google Scholar

S.C. Ligon et al., “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev., vol. 117, no. 15, pp. 10212-10290, 2017, doi: 10.1021/acs.chemrev.7b00074. Search in Google Scholar

W. Zhu et al., “Rapid continuous 3D printing of customizable peripheral nerve guidance conduits,” Mater. Today, vol. 21, no. 9, pp. 951-959, 2018, doi: 10.1016/j.mattod.2018.04.001. Search in Google Scholar

J. Liu, L. Cui, and D. Losic, “Graphene and graphene oxide as new nanocarriers for drug delivery applications,” Acta Biomater., vol. 9, no. 12, pp. 9243-9257, 2013, doi: 10.1016/j.actbio.2013.08.016. Search in Google Scholar

M. Daniele, “Graphene in neurosurgery : the beginning of a new era,” vol. 10, pp. 615–625, 2015. Search in Google Scholar

K. Liao, Y. Lin, C. Macosko, and C. Haynes, “Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts,” ACS Appl ied Mater. Interfaces, vol. 3, no. 7, pp. 2607-2615, 2011, doi: 10.1021/am200428v. Search in Google Scholar

P. Prabhakaran and K.-S. Lee, “Photo-polymerization,” in Functional Polymers, Polymers and Polymeric Composites: A Reference Series, M. A. J. Mazumder, S. H., and A.-A. A, Eds. Springer Nature Switzerland AG, 2019, pp. 1-53. Search in Google Scholar

P. Hu et al., “Conjugated Bifunctional Carbazole-Based Oxime Esters: Efficient and Versatile Photoinitiators for 3D Printing under One- and Two-Photon Excitation,” ChemPhotoChem, vol. 4, no. 3, pp. 224-232, 2020, doi: 10.1002/cptc.201900246. Search in Google Scholar

H. Quan, T. Zhang, H. Xu, S. Luo, J. Nie, and X. Zhu, “Photo-curing 3D printing technique and its challenges,” Bioact. Mater., vol. 5, no. 1, pp. 110-115, 2020, doi: 10.1016/j.bioactmat.2019.12.003. Search in Google Scholar

B. Steyrer, P. Neubauer, R. Liska, and J. Stampfl, “Visible light photoinitiator for 3D-printing of tough methacrylate resins,” Materials (Basel)., vol. 10, no. 12, pp. 1-11, 2017, doi: 10.3390/ma10121445. Search in Google Scholar

B. Zeng et al., “Cytotoxic and cytocompatible comparison among seven photoinitiators-triggered polymers in different tissue cells,” Toxicol. Vitr., vol. 72, no. October 2020, 2021, doi: 10.1016/j.tiv.2021.105103. Search in Google Scholar

C.C. Wang, J.Y. Chen, and J. Wang, “The selection of photoinitiators for photopolymerization of biodegradable polymers and its application in digital light processing additive manufacturing,” J. Biomed. Mater. Res.Part A, vol. 110, no. 1, pp. 204-216, 2022, doi: 10.1002/jbm.a.37277. Search in Google Scholar

J. Guit et al., “Photopolymer Resins with Biobased Methacrylates Based on Soybean Oil for Stereolithography,” ACS Appl. Polym. Mater., vol. 2, no. 2, pp. 949-957, 2020, doi: 10.1021/acsapm.9b01143. Search in Google Scholar

K.S. Lee and J.H. Lee, “Hybrid Thermal Recovery Using Low-Salinity and Smart Waterflood,” Hybrid Enhanc. Oil Recover. using Smart Waterflooding, pp. 129-135, 2019, doi: 10.1016/b978-0-12-816776-2.00006-4. Search in Google Scholar

F. Wajdi, I. Kusumaningtyas, A.R. Wijaya, and A.E. Tontowi, “Graphene synthesis in obtaining a safe particle size in blood circulation system,” Res. J. Pharm. Technol., vol. 14, no. 1, pp. 270-274, 2021, doi: 10.5958/0974-360x.2021.00048.2. Search in Google Scholar

J.H. Sandoval, R.B. Wicker, J.H. Sandoval, and R.B. Wicker, “Functionalizing stereolithography resins : effects of dispersed multi-walled carbon nanotubes on physical properties,” Rapid Prototyp. J., vol. 12, no. 5, pp. 292-303, 2006, doi: 10.1108/13552540610707059. Search in Google Scholar

Y. Arao and M. Kubouchi, “High-rate production of few-layer graphene by high-power probe sonication,” Carbon N. Y., vol. 95, pp. 802-808, 2015, doi: 10.1016/j.carbon.2015.08.108. Search in Google Scholar

Z. Feng, Y. Li, C. Xin, D. Tang, W. Xiong, and H. Zhang, “Fabrication of Graphene-Reinforced Nanocomposites with Improved Fracture Toughness in Net Shape for Complex 3D Structures via Digital Light Processing,” J. Carbon Res., vol. 5, no. 25, pp. 1-16, 2019, doi: 10.3390/c5020025. Search in Google Scholar

R.G. Pauck and B.D. Reddy, “Computational analysis of the radial mechanical performance of PLLA coronary artery stents,” Med. Eng. Phys., vol. 37, no. 1, pp. 7-12, 2015, doi: 10.1016/j.medengphy.2014.09.014. Search in Google Scholar

G. Gonzalez et al., “Development of 3D printable formulations containing CNT with enhanced electrical properties,” Polymer (Guildf)., vol. 109, pp. 246-253, 2017, doi: 10.1016/j.polymer.2016.12.051. Search in Google Scholar