Business Process Clustering in Small and Medium Manufacturing Industries Based on Enterprise Resource Planning Concepts: A Systematic Literature Review
This work is licensed under the Creative Commons Attribution 4.0 International License.
J. Jeston and J. Nelis, Business Process Management, Practical guidelines to successful implementations, First Edit. Elsevier Ltd., 2006.Search in Google Scholar
J. Y. Jung, J. Bae, and L. Liu, “Hierarchical clustering of business process models,” Int. J. Innov. Comput. Inf. Control, vol. 5, no. 12, pp. 4501-4511, 2009.Search in Google Scholar
S. Mamoghli, V. Goepp, and V. Botta-Genoulaz, “An approach for the management of the risk factors impacting the model-based engineering methods in ERP projects,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 1206-1211, 2018, doi: 10.1016/j.ifacol.2018.08.426.Search in Google Scholar
P. Ruivo, B. Johansson, S. Sarker, and T. Oliveira, “The relationship between ERP capabilities, use, and value,” Comput. Ind., vol. 117, 2020, doi: 10.1016/j.compind.2020.103209.Search in Google Scholar
S. Chopra, Supply chain Management; strategy, planning, and operation, Fifth ed. Pearson, 2013.Search in Google Scholar
R. Sarno, H. Ginardi, E. W. Pamungkas, and D. Sunaryono, “Clustering of ERP business process fragments,” Proceeding – 2013 Int. Conf. Comput. Control. Informatics Its Appl. “Recent Challenges Comput. Control Informatics”, IC3INA 2013, pp. 319-324, 2013, doi: 10.1109/IC3INA.2013.6819194.Search in Google Scholar
H. Ordonez, J. Torres-jimenez, C.C. Id, A. Ordonez, E. Herrera-viedma, and G. Maldonado-martinez, “A business process clustering algorithm using incremental covering arrays to explore search space and balanced Bayesian information criterion to evaluate quality of solutions,” pp. 1-27, 2019.Search in Google Scholar
S. Israilova, A. Mukhanova, and T. Yesikova, “Business Process Verification With Integrated Simulation Methods : Focus On ‘Customer Engagement,’” vol. 99, no. 21, pp. 5112-5124, 2021.Search in Google Scholar
J. A. Fitzsimmons and M. J. Fitzsimmons, Service management; operation, strategy, information technology, Seventh. McGraw-hill, 2011.Search in Google Scholar
E. Prasteyo, Data Mining: Mengolah Data Menjadi Informasi Menggunakan Matlab, Pertama. ANDI Yogyakarta, 2014.Search in Google Scholar
Suyanto, Data Mining untuk Klasifikasi dan Klasterisasi Data, Revisi. Informatika Bandung, 2019.Search in Google Scholar
A. Liberati et al., The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration, vol. 62, no. 10. 2009. doi: 10.1016/j.jclinepi.2009.06.006.Search in Google Scholar
Vos viewer, “Center for Science and Technology Studies.” Leiden University, Leiden, The Netherland, 2023. [Online]. Available: https://www.vosviewer.com/Search in Google Scholar
H. Ahn and T. W. Chang, “A similarity-based hierarchical clustering method for manufacturing process models,” Sustain., vol. 11, no. 9, 2019, doi: 10.3390/su11092560.Search in Google Scholar
M.K. Chen, C.M. Wu, L.S. Chen, and Y.P. Huang, “The influential factors of taiwan smes’ clustering keystone business strategy – the perspective of business ecosystem using fahp,” Sustain., vol. 13, no. 18, 2021, doi: 10.3390/su131810304.Search in Google Scholar
J.M. Müller, O. Buliga, and K.I. Voigt, “Fortune favors the prepared: How SMEs approach business model innovations in Industry 4.0,” Technol. Forecast. Soc. Change, vol. 132, no. December 2017, pp. 2-17, 2018, doi: 10.1016/j.techfore.2017.12.019.Search in Google Scholar
P. Holzmann, R.J. Breitenecker, E.J. Schwarz, and P. Gregori, “Business model design for novel technologies in nascent industries: An investigation of 3D printing service providers,” Technol. Forecast. Soc. Change, vol. 159, no. July, p. 120193, 2020, doi: 10.1016/j.techfore.2020.120193.Search in Google Scholar
E. Hariyanti, A. Djunaidy, and D. Siahaan, “Information security vulnerability prediction based on business process model using machine learning approach,” Comput. Secur., vol. 110, p. 102422, 2021, doi: 10.1016/j.cose.2021.102422.Search in Google Scholar
M.R.C.I, “Process modeling: technological innovation to control the risk for perioperative positioning injury,” vol. 74, no. Suppl 6, pp. 4-7, 2021.Search in Google Scholar
B.A. Tama and M. Comuzzi, “An empirical comparison of classification techniques for next event prediction using business process event logs,” Expert Syst. Appl., vol. 129, pp. 233-245, 2019, doi: 10.1016/j.eswa.2019.04.016.Search in Google Scholar
A. Haeri, K. Rezaie, and M.S. Amalnick, “Developing a novel approach to assess the efficiency of resource utilisation in organisations: A case study for an automotive supplier,” Int. J. Prod. Res., vol. 52, no. 10, pp. 2815-2833, 2014, doi: 10.1080/00207543.2013.839891.Search in Google Scholar
A. Haeri and S.H. Iranmanesh, “Using classification techniques to recognize patterns of resource utilization in organizations,” 2015, doi: 10.1177/0954405415584897.Search in Google Scholar
V.S.W. Lam, “Equivalences of BPMN processes,” pp. 189-204, 2009, doi: 10.1007/s11761-009-0048-5.Search in Google Scholar
J. Koszela, “Methods of structural analysis of business processes,” vol. 04016, pp. 1-8, 2018.Search in Google Scholar
M.M. Hassan, M.S. Alenezi, and R.Z. Good, “Spatial pattern analysis of manufacturing industries in Keraniganj, Dhaka, Bangladesh,” GeoJournal, vol. 85, no. 1, pp. 269-283, 2020, doi: 10.1007/s10708-018-9961-5.Search in Google Scholar
T. Wuest, C. Irgens, and K.D. Thoben, “An approach to monitoring quality in manufacturing using supervised machine learning on product state data,” J. Intell. Manuf., vol. 25, no. 5, pp. 1167-1180, 2014, doi: 10.1007/s10845-013-0761-y.Search in Google Scholar
G. San-Payo, J.C. Ferreira, P. Santos, and A.L. Martins, “Machine learning for quality control system,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 11, pp. 4491-4500, 2020, doi: 10.1007/s12652-019-01640-4.Search in Google Scholar
Y. Jin, S. Ji, L. Liu, and W. Wang, “Business model innovation canvas: a visual business model innovation model,” Eur. J. Innov. Manag., vol. 25, no. 5, pp. 1469-1493, 2022, doi: 10.1108/EJIM-02-2021-0079.Search in Google Scholar
A.L. Rodrigues, F.B.G. Torres, E.A.P. Santos, and M.R. Cubas, “Process-modeling-technological-innovation-to-control-the-risk-for-perioperative-positioning-injury – Modelagem-de-processos-inovao-tecnolgica-paracontrole-do-risco-de-leso-por-posicionamentoperioperatrioRevista-Bra.pdf.” 2021.Search in Google Scholar