Accès libre

Synthesis and characterisation of magnesium-doped nanoparticles by the microwave combustion technique for novel applications

, , , , , , ,  et   
31 mars 2025
À propos de cet article

Citez
Télécharger la couverture

Figure 1

MW heating mechanism corresponding to (a) dipolar polarisation and (b) ionic conduction.
MW heating mechanism corresponding to (a) dipolar polarisation and (b) ionic conduction.

Figure 2

Ideal cubic perovskite structure (ABO3).
Ideal cubic perovskite structure (ABO3).

Figure 3

Perovskite structure.
Perovskite structure.

Figure 4

Image of spinel oxide.
Image of spinel oxide.

Figure 5

Spinel crystal.
Spinel crystal.

Figure 6

XRD plot of Ni1−x
                     Mg
                        x
                     Fe2O4 (0 ≤ x ≤ 0.5) samples.
XRD plot of Ni1−x Mg x Fe2O4 (0 ≤ x ≤ 0.5) samples.

Figure 7

Peak shift of Ni1−x
                     Cu
                        x
                     Fe2O4 (0 ≤ x ≤ 0.5) samples.
Peak shift of Ni1−x Cu x Fe2O4 (0 ≤ x ≤ 0.5) samples.

Figure 8

Lattice parameter variation in Ni1−x
                     Cu
                        x
                     Fe2O4 (0 ≤ x ≤ 0.5) samples.
Lattice parameter variation in Ni1−x Cu x Fe2O4 (0 ≤ x ≤ 0.5) samples.

Figure 9

FTIR spectra of Ni1−x
                     Mg
                        x
                     Fe2O4 (0 ≤ x ≤ 0.5) samples.
FTIR spectra of Ni1−x Mg x Fe2O4 (0 ≤ x ≤ 0.5) samples.

Figure 10

HR-SEM images of (a) Ni1Mg0Fe2O4, (b) Ni0.9Mg0.1Fe2O4, (c) Ni0.8Mg0.2Fe2O4, (d) Ni0.7Mg0.3Fe2O4, (e) Ni0.6Mg0.4Fe2O4, and (f) Ni0.5Mg0.5Fe2O4 samples.
HR-SEM images of (a) Ni1Mg0Fe2O4, (b) Ni0.9Mg0.1Fe2O4, (c) Ni0.8Mg0.2Fe2O4, (d) Ni0.7Mg0.3Fe2O4, (e) Ni0.6Mg0.4Fe2O4, and (f) Ni0.5Mg0.5Fe2O4 samples.

Figure 11

EDX images of (a) Ni1Mg0Fe2O4, (b) Ni0.9Mg0.1Fe2O4, (c) Ni0.8Mg0.2Fe2O4, (d) Ni0.7Mg0.3Fe2O4, (e) Ni0.6Mg0.4Fe2O4, and (f) Ni0.5Mg0.5Fe2O4 samples.
EDX images of (a) Ni1Mg0Fe2O4, (b) Ni0.9Mg0.1Fe2O4, (c) Ni0.8Mg0.2Fe2O4, (d) Ni0.7Mg0.3Fe2O4, (e) Ni0.6Mg0.4Fe2O4, and (f) Ni0.5Mg0.5Fe2O4 samples.

Figure 12

Magnetic hysteresis of Ni1−x
                     Mg
                        x
                     Fe2O4 (0 ≤ x ≤ 0.5) samples.
Magnetic hysteresis of Ni1−x Mg x Fe2O4 (0 ≤ x ≤ 0.5) samples.

Figure 13

(F(R)hν)2 versus hν plots Ni1–x
                     Mg
                        x
                     Fe2O4 (0 ≤ x ≤ 0.5) for (a) A sample and (b) F sample.
(F(R)hν)2 versus hν plots Ni1–x Mg x Fe2O4 (0 ≤ x ≤ 0.5) for (a) A sample and (b) F sample.

Figure 14

Mg2+ fraction vs energy gap of Ni1−x
                     Mg
                        x
                     Fe2O4 (0 ≤ x ≤ 0.5) samples.
Mg2+ fraction vs energy gap of Ni1−x Mg x Fe2O4 (0 ≤ x ≤ 0.5) samples.

Hc, Mr, and Ms values of Ni1–x Mg x Fe2O4 (0 ≤ x ≤ 0_5) nanoparticles_

Sample code Hc (Oe) Mr (emu/g) Ms (emu/g)
A 337.01 5.21 17.37
B 502.14 5.45 18.24
C 171.11 5.54 20.94
D 217.08 6.17 22.35
E 195.29 7.35 25.79
F 158.77 6.52 24.72

Sample code, crystallite size, lattice parameter, and band gap values of Ni1−x Mg x Fe2O4 (0 ≤ x ≤ 0_5) samples_

Sample Sample code L (nm) D (nm) a (Å) Eg (eV)
NiFe2O4 A 20 20 8.380 3.35
Ni0.9Mg0.1Fe2O4 B 22 21 8.377 3.29
Ni0.8Mg0.2Fe2O4 C 24 23 8.374 3.25
Ni0.7Mg0.3Fe2O4 D 27 25 8.371 2.97
Ni0.6Mg0.4Fe2O4 E 29 27 8.368 2.73
Ni0.5Mg0.5Fe2O4 F 31 30 8.365 2.32