This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Mahmood, A., Akram, T., Chen, H., Chen, S., On the evolution of additive manufacturing (3D/4D printing) technologies: Materials, applications, and challenges, Polymers, 2022, 14: 4698MahmoodA.AkramT.ChenH.ChenS.On the evolution of additive manufacturing (3D/4D printing) technologies: Materials, applications, and challengesPolymers2022144698Search in Google Scholar
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., Hui, D., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. Part. B, 2018, 143: 172–196NgoT. D.KashaniA.ImbalzanoG.NguyenK. T.HuiD.Additive manufacturing (3D printing): A review of materials, methods, applications and challengesCompos. Part. B2018143172196Search in Google Scholar
Przybytek, A., Kucińska-Lipka, J., Janik, H., Thermoplastic elastomer filaments and their application in 3D printing, Elastomery, 2016, 2016(20): 32–39PrzybytekA.Kucińska-LipkaJ.JanikH.Thermoplastic elastomer filaments and their application in 3D printingElastomery20162016203239Search in Google Scholar
Zhu, W., Pyo, S. H., Wang, P., You, S., Yu, C., Alido, J., et al., Three-dimensional printing of bisphenol A-free polycarbonates, ACS Appl. Mater. Interfaces, 2018, 10(6): 5331–5339ZhuW.PyoS. H.WangP.YouS.YuC.AlidoJ.Three-dimensional printing of bisphenol A-free polycarbonatesACS Appl. Mater. Interfaces201810653315339Search in Google Scholar
Żur, P., Kołodziej, A., Baier, A., Kokot, G., Optimization of ABS 3D-printing method and parameters, Eur. J. Eng. Sci. Technol., 2020, 3(1): 44–51ŻurP.KołodziejA.BaierA.KokotG.Optimization of ABS 3D-printing method and parametersEur. J. Eng. Sci. Technol.2020314451Search in Google Scholar
Zhang, Y., Purssell, C., Mao, K., Leigh, S., A physical investigation of wear and thermal characteristics of 3D printed nylon spur gears, Tribol. Int., 2020, 141: 105953ZhangY.PurssellC.MaoK.LeighS.A physical investigation of wear and thermal characteristics of 3D printed nylon spur gearsTribol. Int.2020141105953Search in Google Scholar
Liu, L., Lin, M., Xu, Z., Lin, M., Polylactic acid-based wood-plastic 3D printing composite and its properties, BioResources, 2019, 14(4): 8484–8498LiuL.LinM.XuZ.LinM.Polylactic acid-based wood-plastic 3D printing composite and its propertiesBioResources201914484848498Search in Google Scholar
Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Current status and future directions of fused filament fabrication, J. Manuf. Process., 2020, 55: 288–306SinghS.SinghG.PrakashC.RamakrishnaS.Current status and future directions of fused filament fabricationJ. Manuf. Process.202055288306Search in Google Scholar
Maurus, P. B., Kaeding, C. C., Bioabsorbable implant material review, Oper. Tech. Sports Med., 2004, 12: 158–160MaurusP. B.KaedingC. C.Bioabsorbable implant material reviewOper. Tech. Sports Med.200412158160Search in Google Scholar
Iheaturu, N. C., Diwe, I. V., Banigo, A. T., Daramola, O. O., Sadiku, E. R., Synthesis of polymeric biomaterial for medicine and surgery, In: Gnanasekaran, D., editor, Green biopolymers and their nanocomposites, Springer, Berlin, Germany, 2019, pp. 267–282IheaturuN. C.DiweI. V.BanigoA. T.DaramolaO. O.SadikuE. R.Synthesis of polymeric biomaterial for medicine and surgeryIn:GnanasekaranD.editor,Green biopolymers and their nanocompositesSpringerBerlin, Germany2019pp. 267282Search in Google Scholar
Krishnan, S., Pandey, P., Mohanty, S., Nayak, S. K., Toughening of polylactic acid: An overview of research progress, Polym. Plast. Technol. Eng., 2016, 55(15): 1623–1652KrishnanS.PandeyP.MohantyS.NayakS. K.Toughening of polylactic acid: An overview of research progressPolym. Plast. Technol. Eng.2016551516231652Search in Google Scholar
Ferri, J. M., Jordá, J., Montanes, N., Fenollar, O., Balart, R., Manufacturing and characterization of poly (lactic acid) composites with hydroxyapatite, J. Thermoplast. Compos. Mater., 2018, 31(7): 865–881FerriJ. M.JordáJ.MontanesN.FenollarO.BalartR.Manufacturing and characterization of poly (lactic acid) composites with hydroxyapatiteJ. Thermoplast. Compos. Mater.2018317865881Search in Google Scholar
Umerah, C. O., Kodali, D., Head, S., Jeelani, S., Rangari, V. K., Synthesis of carbon from waste coconut shell and their application as filler in bioplast polymer filaments for 3D printing, Compos. Part. B Eng., 2020, 202: 108428UmerahC. O.KodaliD.HeadS.JeelaniS.RangariV. K.Synthesis of carbon from waste coconut shell and their application as filler in bioplast polymer filaments for 3D printingCompos. Part. B Eng.2020202108428Search in Google Scholar
Lohar, D. V., Nikalje, A. M., Damle, P. G., Development and testing of hybrid green polymer composite (HGPC) filaments of PLA reinforced with waste bio fillers, Mater. Today Proc., 2022, 62: 818–824LoharD. V.NikaljeA. M.DamleP. G.Development and testing of hybrid green polymer composite (HGPC) filaments of PLA reinforced with waste bio fillersMater. Today Proc.202262818824Search in Google Scholar
Calì, M., Pascoletti, G., Gaeta, M., Milazzo, G., Ambu, R., A new generation of bio-composite thermoplastic filaments for a more sustainable design of parts manufactured by FDM, Appl. Sci., 2020, 10(17): 5852CalìM.PascolettiG.GaetaM.MilazzoG.AmbuR.A new generation of bio-composite thermoplastic filaments for a more sustainable design of parts manufactured by FDMAppl. Sci.202010175852Search in Google Scholar
Bhagia, S., Bornani, K., Agrawal, R., Satlewal, A., Ďurkovič, J., Lagaňa, R., et al., Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries, Appl. Mater. Today, 2021, 24: 101078BhagiaS.BornaniK.AgrawalR.SatlewalA.ĎurkovičJ.LagaňaR.Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineriesAppl. Mater. Today202124101078Search in Google Scholar
Lee, C. H., Padzil, F. N. B. M., Lee, S. H., Ainun, Z. M. A. A., Abdullah, L. C., Potential for natural fiber reinforcement in PLA polymer filaments for fused deposition modeling (FDM) additive manufacturing: A review, Polymers, 2021, 13(9): 1407LeeC. H.PadzilF. N. B. M.LeeS. H.AinunZ. M. A. A.AbdullahL. C.Potential for natural fiber reinforcement in PLA polymer filaments for fused deposition modeling (FDM) additive manufacturing: A reviewPolymers20211391407Search in Google Scholar
Udhayakumar, A., Mayandi, K., Rajini, N., Devi, R. K., Muthukannan, M., Murali, M., Extraction and characterization of novel natural fiber from Cryptostegia grandiflora as a potential reinforcement in biocomposites, J. Nat. Fibers, 2023, 20(1): 2159607UdhayakumarA.MayandiK.RajiniN.DeviR. K.MuthukannanM.MuraliM.Extraction and characterization of novel natural fiber from Cryptostegia grandiflora as a potential reinforcement in biocompositesJ. Nat. Fibers20232012159607Search in Google Scholar
Mohan, A., Priya, R. K., Arunachalam, K. P., Avudaiappan, S., Maureira-Carsalade, N., Roco-Videla, A., Investigating the mechanical, thermal, and crystalline properties of raw and potassium hydroxide treated butea parviflora fibers for green polymer composites, Polymers, 2023, 15(17): 3522MohanA.PriyaR. K.ArunachalamK. P.AvudaiappanS.Maureira-CarsaladeN.Roco-VidelaA.Investigating the mechanical, thermal, and crystalline properties of raw and potassium hydroxide treated butea parviflora fibers for green polymer compositesPolymers202315173522Search in Google Scholar
Wang, S., Capoen, L., D’hooge, D. R., Cardon, L., Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly (lactic acid) filaments into 3D printed materials?, Plast., Rubber Compos., 2018, 47(1): 9–16WangS.CapoenL.D’hoogeD. R.CardonL.Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly (lactic acid) filaments into 3D printed materials?Plast., Rubber Compos.2018471916Search in Google Scholar
Nasir, M. H. M., Taha, M. M., Razali, N., Ilyas, R. A., Knight, V. F., Norrrahim, M. N. F., Effect of chemical treatment of sugar palm fibre on rheological and thermal properties of the PLA composites filament for FDM 3D printing, Materials, 2022, 15(22): 8082NasirM. H. M.TahaM. M.RazaliN.IlyasR. A.KnightV. F.NorrrahimM. N. F.Effect of chemical treatment of sugar palm fibre on rheological and thermal properties of the PLA composites filament for FDM 3D printingMaterials202215228082Search in Google Scholar
Deb, D., Jafferson, J. M., Natural fibers reinforced FDM 3D printing filaments, Mater. Today Proc., 2021, 46: 1308–1318DebD.JaffersonJ. M.Natural fibers reinforced FDM 3D printing filamentsMater. Today Proc.20214613081318Search in Google Scholar
Song, X., He, W., Han, X., Qin, H., Fused deposition modeling of poly (lactic acid)/nutshells composite filaments: Effect of alkali treatment, J. Polym. Environ., 2020, 28: 3139–3152SongX.HeW.HanX.QinH.Fused deposition modeling of poly (lactic acid)/nutshells composite filaments: Effect of alkali treatmentJ. Polym. Environ.20202831393152Search in Google Scholar
Ohaeri, O., Cree, D., Development and characterization of PHB-PLA/corncob composite for fused filament fabrication, J. Compos. Sci., 2022, 6(9): 249OhaeriO.CreeD.Development and characterization of PHB-PLA/corncob composite for fused filament fabricationJ. Compos. Sci.202269249Search in Google Scholar
Mansingh, B. B., Binoj, J. S., Tan, Z. Q., Wong, W. L. E., Amornsakchai, T., Hassan, S. A., et al., Characterization and performance of additive manufactured novel bio-waste polylactic acid eco-friendly composites, J. Polym. Environ., 2023, 31: 2306–2320MansinghB. B.BinojJ. S.TanZ. Q.WongW. L. E.AmornsakchaiT.HassanS. A.Characterization and performance of additive manufactured novel bio-waste polylactic acid eco-friendly compositesJ. Polym. Environ.20233123062320Search in Google Scholar
Magalhães da Silva, S. P., Antunes, T., Costa, M. E. V., Oliveira, J. M., Cork-like filaments for Additive Manufacturing, Addit. Manuf., 2020, 34: 101229Magalhães da SilvaS. P.AntunesT.CostaM. E. V.OliveiraJ. M.Cork-like filaments for Additive ManufacturingAddit. Manuf.202034101229Search in Google Scholar
Ahmad, N. D., Wildan, M. W., Preparation and properties of cellulose nanocrystals-reinforced poly (lactic acid) composite filaments for 3D printing applications, Results Eng., 2023, 17: 100842AhmadN. D.WildanM. W.Preparation and properties of cellulose nanocrystals-reinforced poly (lactic acid) composite filaments for 3D printing applicationsResults Eng.202317100842Search in Google Scholar
Vârban, R., Crișan, I., Vârban, D., Ona, A., Olar, L., Stoie, A., et al., Comparative FT-IR prospecting for cellulose in stems of some fiber plants: Flax, velvet leaf, hemp and jute, Appl. Sci., 2021, 11(18): 8570VârbanR.CrișanI.VârbanD.OnaA.OlarL.StoieA.Comparative FT-IR prospecting for cellulose in stems of some fiber plants: Flax, velvet leaf, hemp and juteAppl. Sci.202111188570Search in Google Scholar
Lv, P., Perre, P., Perré, G. A., TGA-FTIR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durations, BioResources, 2015, 10(3): 4239–4251LvP.PerreP.PerréG. A.TGA-FTIR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durationsBioResources201510342394251Search in Google Scholar
Oh, S. Y., Yoo, D. I., Shin, Y., Seo, G., FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide, Carbohydr. Res., 2005, 340(3): 417–428OhS. Y.YooD. I.ShinY.SeoG.FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxideCarbohydr. Res.20053403417428Search in Google Scholar
Hospodarova, V., Singovszka, E., Stevulova, N., Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials, Am. J. Anal. Chem., 2018, 9(6): 303–310HospodarovaV.SingovszkaE.StevulovaN.Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materialsAm. J. Anal. Chem.201896303310Search in Google Scholar
Sugumaran, P., Susan, V. P., Ravichandran, P., Seshadri, S., Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit pod, J. Sustain. Energy Environ., 2012, 3(3): 125–132SugumaranP.SusanV. P.RavichandranP.SeshadriS.Production and characterization of activated carbon from banana empty fruit bunch and Delonix regia fruit podJ. Sustain. Energy Environ.201233125132Search in Google Scholar
Popescu, C. M., Popescu, M. C., Vasile, C., Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy, Microchem. J., 2010, 95(2): 377–387PopescuC. M.PopescuM. C.VasileC.Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopyMicrochem. J.2010952377387Search in Google Scholar
Johny, V., Kuriakose Mani, A., Palanisamy, S., Rajan, V. K., Palaniappan, M., Santulli, C., Extraction and physico-chemical characterization of pineapple crown leaf fibers (PCLF), Fibers, 2023, 11(1): 5JohnyV.Kuriakose ManiA.PalanisamyS.RajanV. K.PalaniappanM.SantulliC.Extraction and physico-chemical characterization of pineapple crown leaf fibers (PCLF)Fibers20231115Search in Google Scholar
Wang, X., Hu, Y., Song, L., Xuan, S., Xing, W., Bai, Z., et al., Flame retardancy and thermal degradation of intumescent flame retardant poly (lactic acid)/starch biocomposites, Ind. Eng. Chem. Res., 2011, 50(2): 713–720WangX.HuY.SongL.XuanS.XingW.BaiZ.Flame retardancy and thermal degradation of intumescent flame retardant poly (lactic acid)/starch biocompositesInd. Eng. Chem. Res.2011502713720Search in Google Scholar
Udhayakumar, A., Mayandi, K., Rajini, N., Devi, R. K., Muthukannan M., Murali M., et al., Effect of chemical treatment on physico-chemical properties of a novel extracted cellulosic Cryptostegia grandiflora fiber, Mater. Res. Express, 2023, 10(7): 075508UdhayakumarA.MayandiK.RajiniN.DeviR. K.MuthukannanM.MuraliM.Effect of chemical treatment on physico-chemical properties of a novel extracted cellulosic Cryptostegia grandiflora fiberMater. Res. Express2023107075508Search in Google Scholar
Mathew A. P., Oksman K., Sain M., The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid, J. Appl. Polym. Sci., 2006, 101: 300–310MathewA. P.OksmanK.SainM.The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acidJ. Appl. Polym. Sci.2006101300310Search in Google Scholar
Revati R., Majid M. A., Ridzuan M. J. M., Basaruddin K. S., Cheng E. M., Gibson A. G., In vitro degradation of a 3D porous Pennisetum purpureum/PLA biocomposite scaffold, J. Mech. Behav. Biomed. Mater., 2017, 74: 383–391RevatiR.MajidM. A.RidzuanM. J. M.BasaruddinK. S.ChengE. M.GibsonA. G.In vitro degradation of a 3D porous Pennisetum purpureum/PLA biocomposite scaffoldJ. Mech. Behav. Biomed. Mater.201774383391Search in Google Scholar
Park S., Baker J. O., Himmel M. E., Parilla P. A., Johnson D. K., Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnol. Biofuels, 2010, 3: 1–10ParkS.BakerJ. O.HimmelM. E.ParillaP. A.JohnsonD. K.Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performanceBiotechnol. Biofuels20103110Search in Google Scholar
French A. D., Santiago Cintrón M., Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index, Cellulose, 2013, 20: 583–588FrenchA. D.Santiago CintrónM.Cellulose polymorphy, crystallite size, and the Segal Crystallinity IndexCellulose201320583588Search in Google Scholar
Marathe Y. N., Arun Torris A. T., Ramesh C., Badiger M. V., Borassus powder‐reinforced poly (lactic acid) composites with improved crystallization and mechanical properties, J. Appl. Polym. Sci., 2019, 136(18): 47440MaratheY. N.Arun TorrisA. T.RameshC.BadigerM. V.Borassus powder‐reinforced poly (lactic acid) composites with improved crystallization and mechanical propertiesJ. Appl. Polym. Sci.20191361847440Search in Google Scholar