Accès libre

Mechanical properties and quantum mechanical simulations of natural rubber composites with cerium complexes under aging conditions

À propos de cet article

Citez

Enhancing the service life of natural rubber (NR) products, including antioxidants, is crucial to prevent rubber degradation and enhance its oxidation resistance. Phenolic antioxidant 2246 and cerium complex of p-amino salicylic acid (PAS-Ce) are utilized as NR antioxidants. Numerous studies have qualitatively analyzed the antioxidant mechanisms of these compounds. Building upon this perspective, this study quantitatively assessed the protective mechanisms of these antioxidants by combining experimental data with molecular simulations. Additionally, it compared their impacts on the thermal oxidative aging performance of NR. The findings revealed that the PAS-Ce/NR system exhibited the highest mechanical performance retention following multiple days of thermal-oxidative aging. Analyzing the PAS-Ce/NR system through ATR-FTIR and DTA techniques demonstrated that it had the lowest C=O content after thermal-oxidative aging. Furthermore, calculating the activation energy required for thermal-oxidative aging decomposition using the Kissinger and FWO methods indicated that PAS-Ce/NR had the highest activation energy, suggesting superior inhibitory effects against thermal-oxidative aging. Quantum mechanical simulations also illustrated that the dissociation energy of the O-H bond in antioxidants 2246 and PAS-Ce was lower than that of the C-H bond in NR. However, PAS-Ce exhibited a quicker capture of radical species, effectively delaying the oxidation reaction rate of NR molecular chains and thus more efficiently inhibiting the aging process. These insights contribute significantly to comprehending the antioxidative mechanisms in NR aging.

eISSN:
2083-134X
Langue:
Anglais