À propos de cet article

Citez

Rico-Llanos GA, Borrego-González S, Moncayo-Donoso M, Becerra J, Visser R. Collagen type I biomaterials as scaffolds for bone tissue engineering. Polymers. 2021;13(4):599. doi:10.3390/polym13040599. Rico-LlanosGA Borrego-GonzálezS Moncayo-DonosoM BecerraJ VisserR Collagen type I biomaterials as scaffolds for bone tissue engineering Polymers 2021 13 4 599 10.3390/polym13040599 792318833671329 Open DOISearch in Google Scholar

Haq MA, Su Y, Wang D. Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C. 2017;70(1):842–855. doi:10.1016/j.msec.2016.09.081. HaqMA SuY WangD Mechanical properties of PNIPAM based hydrogels: a review Mater Sci Eng C 2017 70 1 842 855 10.1016/j.msec.2016.09.081 27770962 Open DOISearch in Google Scholar

Chitra, V. Diagnosis, screening and treatment of osteoporosis–a review. Biomed Pharmacol J. 2021;14(2):567–575. doi:10.13005/bpj/2159. ChitraV Diagnosis, screening and treatment of osteoporosis–a review Biomed Pharmacol J 2021 14 2 567 575 10.13005/bpj/2159 Open DOISearch in Google Scholar

Cieza A, Causey K, Kamenov K, Hanson SW, Chatterji S, Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019 [published correction appears in Lancet. 2020 Dec 4]. Lancet. 2021;396(10267):2006–2017. doi:10.1016/S0140-6736(20)32340-0. CiezaA CauseyK KamenovK HansonSW ChatterjiS VosT Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019 [published correction appears in Lancet. 2020 Dec 4] Lancet 2021 396 10267 2006 2017 10.1016/S0140-6736(20)32340-0 781120433275908 Open DOISearch in Google Scholar

Amukarimi S, Ramakrishna S, Mozafari M. Smart biomaterials—a proposed definition and overview of the field. Curr Opin Biomed Eng. 2021;19(100311). doi.org/10.1016/j.cobme.2021.100311. AmukarimiS RamakrishnaS MozafariM Smart biomaterials—a proposed definition and overview of the field Curr Opin Biomed Eng 2021 19 100311 doi.org/10.1016/j.cobme.2021.100311. 10.1016/j.cobme.2021.100311 Search in Google Scholar

Montoyal C, Du Y, Anthony L, Gianforcaro AL, Orrego S, Yang M, et al. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Research 2021;9(1):12. doi.org/10.1038/s41413-020-00131-z. MontoyalC DuY AnthonyL GianforcaroAL OrregoS YangM On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook Bone Research 2021 9 1 12 doi.org/10.1038/s41413-020-00131-z. 10.1038/s41413-020-00131-z787874033574225 Search in Google Scholar

Lorenzo RA, Carro AM, Concheiro A, Alvarez-Lorenzo C. Stimuli-responsive materials in analytical separation. Anal Bioanal Chem. 2015;407:4927–4948. doi:10.1007/s00216-015-8679-1. LorenzoRA CarroAM ConcheiroA Alvarez-LorenzoC Stimuli-responsive materials in analytical separation Anal Bioanal Chem 2015 407 4927 4948 10.1007/s00216-015-8679-1 25910881 Open DOISearch in Google Scholar

Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials. 2021;14(4):858. doi:10.3390/ma14040858. ŁabowskaMB CierlukK JankowskaAM KulbackaJ DetynaJ MichalakI A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting Materials 2021 14 4 858 10.3390/ma14040858 791680333579053 Open DOISearch in Google Scholar

Alexander A, Ajazuddin, Khan J, Saraf S, Saraf S. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Euro J Pharm Biopharm. 2014;88(3):575–585. doi:10.1016/j.ejpb.2014.07.005. AlexanderA Ajazuddin KhanJ SarafS SarafS Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications Euro J Pharm Biopharm 2014 88 3 575 585 10.1016/j.ejpb.2014.07.005 25092423 Open DOISearch in Google Scholar

Sikdar P, Uddin M, Dip TM, Islam S, Hoque MS, Dhar AK, et al. Recent advances in the synthesis of smart hydrogels. Mater Adv. 2021;2:4532–4573. doi:10.1039/D1MA00193K. SikdarP UddinM DipTM IslamS HoqueMS DharAK Recent advances in the synthesis of smart hydrogels Mater Adv 2021 2 4532 4573 10.1039/D1MA00193K Open DOISearch in Google Scholar

He W, Ma Y, Gao X, Song J. Application of Poly(N-isopropylacrylamide) as thermosensitive smart materials. J Phys: Conf Ser. 2020;1676(1):012063. doi:10.1088/1742-6596/1676/1/012063. HeW MaY GaoX SongJ Application of Poly(N-isopropylacrylamide) as thermosensitive smart materials J Phys: Conf Ser 2020 1676 1 012063 10.1088/1742-6596/1676/1/012063 Open DOISearch in Google Scholar

Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng: R Rep. 2015;93:1–49. doi:10.1016/j.mser.2015.04.001. KoettingMC PetersJT SteichenSD PeppasNA Stimulus-responsive hydrogels: theory, modern advances, and applications Mater Sci Eng: R Rep 2015 93 1 49 10.1016/j.mser.2015.04.001 484755127134415 Open DOISearch in Google Scholar

Icriverzi M, Rusen L, Sima LH, Moldovan A, Brajnicov S, Bonciu A, et al. In vitro behavior of human mesenchymal stem cells on poly(N-isopropylacrylamide) based biointerfaces obtained by matrix-assisted pulsed laser evaporation. Applied Surface Science. 2018;440:712–724. doi:10.1016/j.apsusc.2018.01.200. IcriverziM RusenL SimaLH MoldovanA BrajnicovS BonciuA In vitro behavior of human mesenchymal stem cells on poly(N-isopropylacrylamide) based biointerfaces obtained by matrix-assisted pulsed laser evaporation Applied Surface Science 2018 440 712 724 10.1016/j.apsusc.2018.01.200 Open DOISearch in Google Scholar

Queiroz PM. Síntese e caracterização de hidrogéis superabsorventes obtidos a partir da copolimerização de acrilamida, n-isopropilacrilamida e metacrilato de sódio. Belo Horizonte: Universidade Federal de Minas Gerais; 2010. QueirozPM Síntese e caracterização de hidrogéis superabsorventes obtidos a partir da copolimerização de acrilamida, n-isopropilacrilamida e metacrilato de sódio Belo Horizonte Universidade Federal de Minas Gerais 2010 Search in Google Scholar

Matzelle TR, Geuskens G, Kruse N. Elastic properties of poly(N-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy. Macromolecules. 2003;36(8):2926–2931. doi:10.1021/ma021719p. MatzelleTR GeuskensG KruseN Elastic properties of poly(N-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy Macromolecules 2003 36 8 2926 2931 10.1021/ma021719p Open DOISearch in Google Scholar

Aquada FA, Muniz EC, Vaz CMP, Mattoso LHCC. Correlation between parameters of swelling kinetic with network and hydrophilic characteristics of polyacrylamide and methylcellulose hydrogels. Química Nova, 2009;32(6):1482–1490. doi:10.1590/S0100-40422009000600023. AquadaFA MunizEC VazCMP MattosoLHCC Correlation between parameters of swelling kinetic with network and hydrophilic characteristics of polyacrylamide and methylcellulose hydrogels Química Nova 2009 32 6 1482 1490 10.1590/S0100-40422009000600023 Open DOISearch in Google Scholar

Ribeiro CA., Martins MVS, Bressiani AH, Bressiani JC, Leyva ME, de Queiroz AAA. Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering. Mater Sci Eng C. 2017;81:156–166. doi:10.1016/j.msec.2017.07.048. RibeiroCA MartinsMVS BressianiAH BressianiJC LeyvaME de QueirozAAA Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering Mater Sci Eng C 2017 81 156 166 10.1016/j.msec.2017.07.048 28887960 Open DOISearch in Google Scholar

Hong TT, Okabe H, Hidaka Y, Hara K. Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer. Environ Pollut. 2018;242(Pt B):1458–1466. doi:10.1016/j.envpol.2018.07.129. HongTT OkabeH HidakaY HaraK Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer Environ Pollut 2018 242 Pt B 1458 1466 10.1016/j.envpol.2018.07.129 30142561 Open DOISearch in Google Scholar

Ruland W. X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallographica. 1961;14:1180–1185. doi:10.1107/S0365110X61003429. RulandW X-ray determination of crystallinity and diffuse disorder scattering Acta Crystallographica 1961 14 1180 1185 10.1107/S0365110X61003429 Open DOISearch in Google Scholar

Pavia DL, Lampman GM, Kriz G, Vyvyan JA. Introduction to spectroscopy. City: Cengage learning; 2014. PaviaDL LampmanGM KrizG VyvyanJA Introduction to spectroscopy City Cengage learning 2014 Search in Google Scholar

Wang N, Ru G, Wang L, Feng J. 1H MAS NMR studies of the phase separation of poly (N-isopropylacrylamide) gel in binary solvents. Langmuir. 2009;25(10):5898–5902. doi:10.1021/la8038363. WangN RuG WangL FengJ 1H MAS NMR studies of the phase separation of poly (N-isopropylacrylamide) gel in binary solvents Langmuir 2009 25 10 5898 5902 10.1021/la8038363 19334692 Open DOISearch in Google Scholar

Zhang R, Lee B, Stafford CM, Douglas JF, Dobrynin AV, Bockstaller MR, Karim, A. (2017) Entropy-driven segregation of polymer-grafted nanoparticles under confinement. Proc Natl Acad Sci. 2017;114(10):2462–2467. doi:10.1073/pnas.1613828114. ZhangR LeeB StaffordCM DouglasJF DobryninAV BockstallerMR KarimA 2017 Entropy-driven segregation of polymer-grafted nanoparticles under confinement Proc Natl Acad Sci 2017 114 10 2462 2467 10.1073/pnas.1613828114 534755528228522 Open DOISearch in Google Scholar

Lucas EF, Soares BG, Monteiro, EE. Caracterização de polímeros: determinação de peso molecular e análise térmica. Rio de Janeiro: E-papers Serviços Editoriais; 2001. LucasEF SoaresBG MonteiroEE Caracterização de polímeros: determinação de peso molecular e análise térmica Rio de Janeiro E-papers Serviços Editoriais 2001 Search in Google Scholar

eISSN:
2083-134X
Langue:
Anglais