À propos de cet article

Citez

Goyal S, Agarwal G, Agarwal S, Karar PK. Oral sustained release tablets: an overview with a special emphasis on matrix tablet. Am J Adv Drug Deliv. 2017;5(2) 064–076: http://doi.org/10.21767/2321-547X.1000013. GoyalS AgarwalG AgarwalS KararPK Oral sustained release tablets: an overview with a special emphasis on matrix tablet Am J Adv Drug Deliv 2017 5 2 064 076 http://doi.org/10.21767/2321-547X.1000013. 10.21767/2321-547X.1000013 Search in Google Scholar

Pragati S, Ashok S. Recent advances in periodontal drug delivery systems. Int J Drug Deliv. 2009;1(1):1–14. http://doi.org/10.5138/ijdd.2009.0975.0215.01001. PragatiS AshokS Recent advances in periodontal drug delivery systems Int J Drug Deliv 2009 1 1 1 14 http://doi.org/10.5138/ijdd.2009.0975.0215.01001. 10.5138/ijdd.2009.0975.0215.01001 Search in Google Scholar

Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther. 2019;4(1):33. http://doi.org/10.1038/s41392-019-0068-3. SinghAP BiswasA ShuklaA MaitiP Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles Signal Transduct Target Ther 2019 4 1 33 http://doi.org/10.1038/s41392-019-0068-3. 10.1038/s41392-019-0068-3 Search in Google Scholar

McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30(1):67–76. http://doi.org/10.1093/epirev/mxn001. McGrathJ SahaS ChantD WelhamJ Schizophrenia: a concise overview of incidence, prevalence, and mortality Epidemiol Rev 2008 30 1 67 76 http://doi.org/10.1093/epirev/mxn001. 10.1093/epirev/mxn001 Search in Google Scholar

WHO. Schizophrenia. 2019. 2019. https://www.who.int/en/news-room/fact-sheets/detail/schizophrenia. Accessed 3 Apr 2021. WHO Schizophrenia 2019 2019. https://www.who.int/en/news-room/fact-sheets/detail/schizophrenia. Accessed 3 Apr 2021. Search in Google Scholar

SARDAA. About Schizophrenia | SARDAA. Schizophrenia and related disorders alliance of America. 2020. https://sczaction.org/. Accessed 2 Apr 2021. SARDAA. About Schizophrenia | SARDAA Schizophrenia and related disorders alliance of America 2020 https://sczaction.org/. Accessed 2 Apr 2021. Search in Google Scholar

American Addiction Centers. Schizophrenia symptoms, patterns and statistics and patterns. MentalHelp. net. 2020. https://www.mentalhelp.net/schizophrenia/statistics/. Accessed 16 Apr 2021. American Addiction Centers Schizophrenia symptoms, patterns and statistics and patterns. MentalHelp. net 2020 https://www.mentalhelp.net/schizophrenia/statistics/. Accessed 16 Apr 2021. Search in Google Scholar

Mathews M, Gratz S, Adetunji B, George V, Mathews M, Basil B. Antipsychotic-induced movement disorders: evaluation and treatment. Psychiatry (Edgmont). 2005;2(3):36–41. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3004713. Accessed 2 Apr 2021 MathewsM GratzS AdetunjiB GeorgeV MathewsM BasilB Antipsychotic-induced movement disorders: evaluation and treatment Psychiatry (Edgmont) 2005 2 3 36 41 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3004713. Accessed 2 Apr 2021 Search in Google Scholar

James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7. JamesSL AbateD AbateKH AbaySM AbbafatiC AbbasiN Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 Lancet 2018 392 10159 1789 1858 https://doi.org/10.1016/S0140-6736(18)32279-7. 10.1016/S0140-6736(18)32279-7 Search in Google Scholar

Quarantelli M, Palladino O, Prinster A, Schiavone V, Carotenuto B, Brunetti A, et al. Patients with poor response to antipsychotics have a more severe pattern of frontal atrophy: a voxel-based morphometry study of treatment resistance in schizophrenia. Biomed Res Int. 2014;2014(1):1–9. https://doi.org/10.1155/2014/325052. QuarantelliM PalladinoO PrinsterA SchiavoneV CarotenutoB BrunettiA Patients with poor response to antipsychotics have a more severe pattern of frontal atrophy: a voxel-based morphometry study of treatment resistance in schizophrenia Biomed Res Int 2014 2014 1 1 9 https://doi.org/10.1155/2014/325052. 10.1155/2014/325052413509525157354 Search in Google Scholar

Semahegn A, Torpey K, Manu A, Assefa N, Tesfaye G, Ankomah A. Psychotropic medication non-adherence and its associated factors among patients with major psychiatric disorders: a systematic review and metaanalysis. Syst Rev. 2020;9(1):17. https://doi.org/doi.org/10.1186/s13643-020-1274-3. SemahegnA TorpeyK ManuA AssefaN TesfayeG AnkomahA Psychotropic medication non-adherence and its associated factors among patients with major psychiatric disorders: a systematic review and metaanalysis Syst Rev 2020 9 1 17 https://doi.org/doi.org/10.1186/s13643-020-1274-3. 10.1186/s13643-020-1274-3696686031948489 Search in Google Scholar

Staring ABP, Van der Gaag M, Koopmans GT, Selten JP, Van Beveren JM, Hengeveld MW, et al. Treatment adherence therapy in people with psychotic disorders: randomised controlled trial. Br J Psychiatry. 2010; 197(6):448–455. https://doi.org/10.1192/bjp.bp.110.077289. StaringABP Van der GaagM KoopmansGT SeltenJP Van BeverenJM HengeveldMW Treatment adherence therapy in people with psychotic disorders: randomised controlled trial Br J Psychiatry 2010 197 6 448 455 https://doi.org/10.1192/bjp.bp.110.077289. 10.1192/bjp.bp.110.07728921119150 Search in Google Scholar

Marcus SC, Zummo J, Pettit AR, Stoddard J, Doshi JA. Antipsychotic adherence and rehospitalization in schizophrenia patients receiving oral versus long-acting injectable antipsychotics following hospital discharge. J Manag Care Spec Pharm. 2015;21(9):754–769. https://doi.org/10.18553/jmcp.2015.21.9.754. MarcusSC ZummoJ PettitAR StoddardJ DoshiJA Antipsychotic adherence and rehospitalization in schizophrenia patients receiving oral versus long-acting injectable antipsychotics following hospital discharge J Manag Care Spec Pharm 2015 21 9 754 769 https://doi.org/10.18553/jmcp.2015.21.9.754. 10.18553/jmcp.2015.21.9.75426308223 Search in Google Scholar

MPR. Fluphenazine dosage & Rx info | uses, side effects. MPR (The Right Dose of Information). 2021. https://www.empr.com/drug/fluphenazine/. Accessed 23 May 2021. MPR Fluphenazine dosage & Rx info | uses, side effects. MPR (The Right Dose of Information) 2021 https://www.empr.com/drug/fluphenazine/. Accessed 23 May 2021. Search in Google Scholar

Rxlist. Prolixin (Fluphenazine): uses, dosage, side effects, interactions, warning. RxList. 2017. https://www.rxlist.com/prolixin-drug.htm. Accessed 12 Apr 2021. Rxlist Prolixin (Fluphenazine): uses, dosage, side effects, interactions, warning. RxList 2017 https://www.rxlist.com/prolixin-drug.htm. Accessed 12 Apr 2021. Search in Google Scholar

Wirshing DA, Buckley PF. Schizophrenia treatment challenges. Psychiatric Times. 2003. https://www.psychiatrictimes.com/view/schizophrenia-treatment-challenges. Accessed 12 Apr 2021. WirshingDA BuckleyPF Schizophrenia treatment challenges Psychiatric Times 2003 https://www.psychiatrictimes.com/view/schizophrenia-treatment-challenges. Accessed 12 Apr 2021. Search in Google Scholar

Singh B, Bhatowa R, Tripathi C, Kapil R. Developing micro-/nanoparticulate drug delivery systems using ‘design of experiments’. Int J Pharm Investig. 2011;1(2):75. https://doi.org/10.4103/2230-973X.82395. SinghB BhatowaR TripathiC KapilR Developing micro-/nanoparticulate drug delivery systems using ‘design of experiments’ Int J Pharm Investig 2011 1 2 75 https://doi.org/10.4103/2230-973X.82395. 10.4103/2230-973X.82395346512323071925 Search in Google Scholar

Asmawi AA, Salim N, Abdulmalek E, Abdul Rahman MB. Modeling the effect of composition on formation of aerosolized nanoemulsion system encapsulating docetaxel and curcumin using D-optimal mixture experimental design. Int J Mol Sci. 2020;21(12):4357. https://doi.org/10.3390/ijms21124357. AsmawiAA SalimN AbdulmalekE Abdul RahmanMB Modeling the effect of composition on formation of aerosolized nanoemulsion system encapsulating docetaxel and curcumin using D-optimal mixture experimental design Int J Mol Sci 2020 21 12 4357 https://doi.org/10.3390/ijms21124357. 10.3390/ijms21124357735274432575390 Search in Google Scholar

Joseph E, Reddi S, Rinwa V, Balwani G, Saha R. DoE based Olanzapine loaded poly-caprolactone nanoparticles decreases extrapyramidal effects in rodent model. Int J Pharm. 2018;541(1–2):198–205. https://doi.org/10.1016/j.ijpharm.2018.02.010. JosephE ReddiS RinwaV BalwaniG SahaR DoE based Olanzapine loaded poly-caprolactone nanoparticles decreases extrapyramidal effects in rodent model Int J Pharm 2018 541 1–2 198 205 https://doi.org/10.1016/j.ijpharm.2018.02.010. 10.1016/j.ijpharm.2018.02.01029474898 Search in Google Scholar

Teja SPS, Damodharan N. 2 3 full factorial model for particle size optimization of methotrexate loaded chitosan nanocarriers: A design of experiments (DoE) approach. Biomed Res Int. 2018;1:1–9. https://doi.org/10.1155/2018/7834159. TejaSPS DamodharanN 2 3 full factorial model for particle size optimization of methotrexate loaded chitosan nanocarriers: A design of experiments (DoE) approach Biomed Res Int 2018 1 1 9 https://doi.org/10.1155/2018/7834159. 10.1155/2018/7834159617631330356374 Search in Google Scholar

Mandlik SK, Ranpise NS. Implementation of experimental design methodology in preparation and characterization of zolmitriptan loaded chitosan nanoparticles. Int Curr Pharm J. 2017; 6(3):16–22. https://doi.org/10.3329/icpj.v6i3.32684. MandlikSK RanpiseNS Implementation of experimental design methodology in preparation and characterization of zolmitriptan loaded chitosan nanoparticles Int Curr Pharm J 2017 6 3 16 22 https://doi.org/10.3329/icpj.v6i3.32684. 10.3329/icpj.v6i3.32684 Search in Google Scholar

Politis DMN, Colombo S, Colombo P, Rekkas G. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm. 2017;43(6):889–901. https://doi.org/10.1080/03639045.2017.1291672. PolitisDMN ColomboS ColomboP RekkasG Design of experiments (DoE) in pharmaceutical development Drug Dev Ind Pharm 2017 43 6 889 901 https://doi.org/10.1080/03639045.2017.1291672. 10.1080/03639045.2017.129167228166428 Search in Google Scholar

Anderson-Cook CM, Goldfarb HB, Borror CM, Montgomery DC, Canter KG, Twist JN. Mixture and mixtureprocess variable experiments for pharmaceutical applications. Pharm Stat. 2004;3(4):247–260. https://doi.org/10.1002/pst.138. Anderson-CookCM GoldfarbHB BorrorCM MontgomeryDC CanterKG TwistJN Mixture and mixtureprocess variable experiments for pharmaceutical applications Pharm Stat 2004 3 4 247 260 https://doi.org/10.1002/pst.138. 10.1002/pst.138 Search in Google Scholar

Brits R, Engelbrecht AP, van den Bergh F. Locating multiple optima using particle swarm optimization. Appl Math Comput. 2007;189(2):1859–1883. https://doi.org/10.1016/j.amc.2006.12.066. BritsR EngelbrechtAP van den BerghF Locating multiple optima using particle swarm optimization Appl Math Comput 2007 189 2 1859 1883 https://doi.org/10.1016/j.amc.2006.12.066. 10.1016/j.amc.2006.12.066 Search in Google Scholar

Ansary MAT, Panda G. A sequential quadratic programming method for constrained multi-objective optimization problems. J Appl Math Comput. 2020;64(1–2):379–397. https://doi.org/10.1007/s12190-020-01359-y. AnsaryMAT PandaG A sequential quadratic programming method for constrained multi-objective optimization problems J Appl Math Comput 2020 64 1–2 379 397 https://doi.org/10.1007/s12190-020-01359-y. 10.1007/s12190-020-01359-y Search in Google Scholar

Nicolaou CA, Brown N. Multi-objective optimization methods in drug design. Drug Discov Today Technol. 2013;10(3):427–435. https://doi.org/10.1016/j.ddtec.2013.02.001. NicolaouCA BrownN Multi-objective optimization methods in drug design Drug Discov Today Technol 2013 10 3 427 435 https://doi.org/10.1016/j.ddtec.2013.02.001. 10.1016/j.ddtec.2013.02.00124050140 Search in Google Scholar

Perez-Escobedo JL, Azzaro-Pantel C, Pibouleau L. Multiobjective strategies for new product development in the pharmaceutical industry. Comput Chem Eng. 2012;37(1):278–296. https://doi.org/10.1016/j.compchemeng.2011.10.004. Perez-EscobedoJL Azzaro-PantelC PibouleauL Multiobjective strategies for new product development in the pharmaceutical industry Comput Chem Eng 2012 37 1 278 296 https://doi.org/10.1016/j.compchemeng.2011.10.004. 10.1016/j.compchemeng.2011.10.004 Search in Google Scholar

Furtuna R, Curteanu S, Racles C. NSGA-II-RJG applied to multi-objective optimization of polymeric nanoparticles synthesis with silicone surfactants. Open Chem. 2011;9(6):1080–1095. https://doi.org/10.2478/s11532-011-0096-5. FurtunaR CurteanuS RaclesC NSGA-II-RJG applied to multi-objective optimization of polymeric nanoparticles synthesis with silicone surfactants Open Chem 2011 9 6 1080 1095 https://doi.org/10.2478/s11532-011-0096-5. 10.2478/s11532-011-0096-5 Search in Google Scholar

Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–197. https://doi.org/10.1109/4235.996017. DebK PratapA AgarwalS MeyarivanT A fast and elitist multiobjective genetic algorithm: NSGA-II IEEE Trans Evol Comput 2002 6 2 182 197 https://doi.org/10.1109/4235.996017. 10.1109/4235.996017 Search in Google Scholar

Hemmat Esfe M, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WH, Abbasian Arani AA, et al., Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al 2 O 3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Transf. 2017;82(1):154–160. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.015. Hemmat EsfeM RaziP HajmohammadMH RostamianSH SarsamWH Abbasian AraniAA Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al 2 O 3 nanofluids by NSGA-II using ANN Int Commun Heat Mass Transf 2017 82 1 154 160 https://doi.org/10.1016/j.icheatmasstransfer.2016.08.015. 10.1016/j.icheatmasstransfer.2016.08.015 Search in Google Scholar

Hemmat Esfe M, Motallebi SM. Four objective optimization of aluminum nanoparticles/oil, focusing on thermo-physical properties optimization. Powder Technol. 2019;356(1):832–846. https://doi.org/10.1016/j.powtec.2019.08.041. Hemmat EsfeM MotallebiSM Four objective optimization of aluminum nanoparticles/oil, focusing on thermo-physical properties optimization Powder Technol 2019 356 1 832 846 https://doi.org/10.1016/j.powtec.2019.08.041. 10.1016/j.powtec.2019.08.041 Search in Google Scholar

Moslemi S, Zavvar Sabegh MH, Mirzazadeh A, Ozturkoglu Y, Maass E. A multi-objective model for multi-production and multi-echelon closed-loop pharmaceutical supply chain considering quality concepts: NSGAII approach. Int J Syst Assur Eng Manag. 2017;8(S2):1717–1733. https://doi.org/10.1007/s13198-017-0650-4. MoslemiS Zavvar SabeghMH MirzazadehA OzturkogluY MaassE A multi-objective model for multi-production and multi-echelon closed-loop pharmaceutical supply chain considering quality concepts: NSGAII approach Int J Syst Assur Eng Manag 2017 8 S2 1717 1733 https://doi.org/10.1007/s13198-017-0650-4. 10.1007/s13198-017-0650-4 Search in Google Scholar

Baghaei B, Saeb MR, Jafari SH, Khonakdar HA, Rezaee B, Goodarzi V, et al. Modeling and closed-loop control of particle size and initial burst of PLGA biodegradable nanoparticles for targeted drug delivery. J Appl Polym Sci. 2017;134(33):45145. https://doi.org/10.1002/app.45145. BaghaeiB SaebMR JafariSH KhonakdarHA RezaeeB GoodarziV Modeling and closed-loop control of particle size and initial burst of PLGA biodegradable nanoparticles for targeted drug delivery J Appl Polym Sci 2017 134 33 45145 https://doi.org/10.1002/app.45145. 10.1002/app.45145 Search in Google Scholar

Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125–132. https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4. CalvoP Remunan-LopezC Vila-JatoJL AlonsoMJ Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers J Appl Polym Sci 1997 63 1 125 132 https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4. 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4 Search in Google Scholar

Pedroso-Santana S, Fleitas-Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int. 2020;69(5):443–447. https://doi.org/10.1002/pi.5970. Pedroso-SantanaS Fleitas-SalazarN Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes Polym Int 2020 69 5 443 447 https://doi.org/10.1002/pi.5970. 10.1002/pi.5970 Search in Google Scholar

Lazaridou M, Christodoulou E, Nerantzaki M, Kostoglou M, Lambropoulou DA, Katsarou A, et al. Formulation and in-vitro characterization of chitosan-nanoparticles loaded with the iron chelator deferoxamine mesylate (DFO). Pharmaceutics. 2020;12(3):238. https://doi.org/10.3390/pharmaceutics12030238. LazaridouM ChristodoulouE NerantzakiM KostoglouM LambropoulouDA KatsarouA Formulation and in-vitro characterization of chitosan-nanoparticles loaded with the iron chelator deferoxamine mesylate (DFO) Pharmaceutics 2020 12 3 238 https://doi.org/10.3390/pharmaceutics12030238. 10.3390/pharmaceutics12030238 Search in Google Scholar

Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther. 2016;10(1):483–507. https://doi.org/10.2147/DDDT.S99651. AhmedTA AljaeidBM Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery Drug Des Devel Ther 2016 10 1 483 507 https://doi.org/10.2147/DDDT.S99651. 10.2147/DDDT.S99651 Search in Google Scholar

Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems – a review (part 2). Trop J Pharm Res. 2013;12(2):265–273. https://doi.org/10.4314/tjpr.v12i2.20. HonaryS ZahirF Effect of zeta potential on the properties of nano-drug delivery systems – a review (part 2) Trop J Pharm Res 2013 12 2 265 273 https://doi.org/10.4314/tjpr.v12i2.20. 10.4314/tjpr.v12i2.20 Search in Google Scholar

Aktar Demirtas E, Ayva O, Buruk Y. A case study in mixture design: multi response optimization of glaze formulation. Qual Eng. 2015;27(2):186–195. https://doi.org/10.1080/08982112.2014.942038. Aktar DemirtasE AyvaO BurukY A case study in mixture design: multi response optimization of glaze formulation Qual Eng 2015 27 2 186 195 https://doi.org/10.1080/08982112.2014.942038. 10.1080/08982112.2014.942038 Search in Google Scholar

Gozalvez JM, Garcia-Diaz JC. Mixture design experiments applied to the formulation of colorant solutions. J Chem Educ. 2006;83(4):647. https://doi.org/10.1021/ed083p647. GozalvezJM Garcia-DiazJC Mixture design experiments applied to the formulation of colorant solutions J Chem Educ 2006 83 4 647 https://doi.org/10.1021/ed083p647. 10.1021/ed083p647 Search in Google Scholar

MinitabR 18 Support. Comparing full factorial and fractional designs in mixtures designs. 2019. https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/supporting-topics/mixture-designs/comparing-full-factorial-and-fractional-designs. Accessed 5 Feb. 2021. MinitabR 18 Support Comparing full factorial and fractional designs in mixtures designs 2019 https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/supporting-topics/mixture-designs/comparing-full-factorial-and-fractional-designs. Accessed 5 Feb. 2021. Search in Google Scholar

Hinkelmann K. Design and analysis of experiments. vol. 3. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012. HinkelmannK Design and analysis of experiments 3 Hoboken, NJ, USA John Wiley & Sons, Inc. 2012 10.1002/9781118147634 Search in Google Scholar

Solomon J. Constrained optimization. In: Numerical algorithms: methods for computer vision, machine learning, and graphics. 1st ed., vol. 20, no. 5. A K Peters/CRC Press New Yourk; 2015. pp. 206–227. SolomonJ Constrained optimization In: Numerical algorithms: methods for computer vision, machine learning, and graphics 1st ed. 20 5 A K Peters/CRC Press New Yourk 2015 206 227 10.1201/b18657-18 Search in Google Scholar

Vachhani VL, Dabhi VK, Prajapati HB. Survey of multi objective evolutionary algorithms. In: 2015 international conference on circuits, power and computing technologies [ICCPCT-2015], Mar. 2015, pp. 1–9. https://doi.org/10.1109/ICCPCT.2015.7159422. VachhaniVL DabhiVK PrajapatiHB Survey of multi objective evolutionary algorithms In: 2015 international conference on circuits, power and computing technologies [ICCPCT-2015] Mar. 2015 1 9 https://doi.org/10.1109/ICCPCT.2015.7159422. 10.1109/ICCPCT.2015.7159422 Search in Google Scholar

Vachhani VL, Dabhi VK, Prajapati HB. Improving NSGA-II for solving multi objective function optimization problems. In: 2016 International conference on computer communication and informatics (ICCCI); 2016. pp. 1–6, https://doi.org/10.1109/ICCCI.2016.7479921. VachhaniVL DabhiVK PrajapatiHB Improving NSGA-II for solving multi objective function optimization problems In: 2016 International conference on computer communication and informatics (ICCCI) 2016 1 6 https://doi.org/10.1109/ICCCI.2016.7479921. 10.1109/ICCCI.2016.7479921 Search in Google Scholar

Acampora G, Kaymak U, Loia V, Vitiello A. Applying NSGA-II for solving the ontology alignment problem. In: 2013 IEEE international conference on systems, man, and cybernetics; Oct. 2013, pp. 1098–1103. https://doi.org/10.1109/SMC.2013.191. AcamporaG KaymakU LoiaV VitielloA Applying NSGA-II for solving the ontology alignment problem In: 2013 IEEE international conference on systems, man, and cybernetics Oct. 2013 1098 1103 https://doi.org/10.1109/SMC.2013.191. 10.1109/SMC.2013.191 Search in Google Scholar

Clayton KN, Salameh JW, Wereley ST, Kinzer-Ursem TL. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics. 2016;10(5):1–14. https://doi.org/10.1063/1.4962992. ClaytonKN SalamehJW WereleyST Kinzer-UrsemTL Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry Biomicrofluidics 2016 10 5 1 14 https://doi.org/10.1063/1.4962992. 10.1063/1.4962992503530327703593 Search in Google Scholar

Scrivens G, Ticehurst M, Swanson JT. Strategies for improving the reliability of accelerated predictive stability (APS) studies. In: Fenghe Qiu GS, editor. Accelerated predictive stability, Elsevier; Amsterdam, 2018, pp. 175–206. ScrivensG TicehurstM SwansonJT Strategies for improving the reliability of accelerated predictive stability (APS) studies In: GSFenghe Qiu editor. Accelerated predictive stability Elsevier Amsterdam 2018 175 206 10.1016/B978-0-12-802786-8.00007-3 Search in Google Scholar

Devaraj P, Kumari P, Aarti C, Renganathan A. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF- 7 cell line. J Nanotechnol. 2013;2013(1):1–5. https://doi.org/10.1155/2013/598328. DevarajP KumariP AartiC RenganathanA Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF- 7 cell line J Nanotechnol 2013 2013 1 1 5 https://doi.org/10.1155/2013/598328. 10.1155/2013/598328 Search in Google Scholar

Kanha P, Saengkwamsawang P. Effect of stirring time on morphology and crystalline features of MnO 2 nanoparticles synthesized by co-precipitation method. Inorg Nano-Metal Chem. 2017;47(8):1129–1133. https://doi.org/10.1080/24701556.2017.1284100. KanhaP SaengkwamsawangP Effect of stirring time on morphology and crystalline features of MnO 2 nanoparticles synthesized by co-precipitation method Inorg Nano-Metal Chem 2017 47 8 1129 1133 https://doi.org/10.1080/24701556.2017.1284100. 10.1080/24701556.2017.1284100 Search in Google Scholar

Topp R, Gomez G. Residual analysis in linear regression models with an interval-censored covariate. Stat Med. 2004;23(21):3377–3391. https://doi.org/10.1002/sim.1731. ToppR GomezG Residual analysis in linear regression models with an interval-censored covariate Stat Med 2004 23 21 3377 3391 https://doi.org/10.1002/sim.1731. 10.1002/sim.173115490424 Search in Google Scholar

Casson RJ, Farmer LDM. Understanding and checking the assumptions of linear regression: a primer for medical researchers. Clin Experiment Ophthalmol. 2014;42(6):590–596. https://doi.org/10.1111/ceo.12358. CassonRJ FarmerLDM Understanding and checking the assumptions of linear regression: a primer for medical researchers Clin Experiment Ophthalmol 2014 42 6 590 596 https://doi.org/10.1111/ceo.12358. 10.1111/ceo.1235824801277 Search in Google Scholar

Martin J, de Adana DDR, Asuero AG. Fitting models to data: residual analysis, a primer. In: Uncertainty quantification and model calibration. Jan Peter Hessling, In- Tech. London, 2017, pp. 791–796. MartinJ de AdanaDDR AsueroAG Fitting models to data: residual analysis, a primer In: Uncertainty quantification and model calibration Jan Peter Hessling, In-Tech London 2017 791 796 10.5772/68049 Search in Google Scholar

Zhao X, Zhang Y, Xie S, Qin Q, Wu S, Luo B. Outlier detection based on residual histogram preference for geometric multi-model fitting. Sensors. 2020;20(11):3037. https://doi.org/10.3390/s20113037. ZhaoX ZhangY XieS QinQ WuS LuoB Outlier detection based on residual histogram preference for geometric multi-model fitting Sensors 2020 20 11 3037 https://doi.org/10.3390/s20113037. 10.3390/s20113037730885632471177 Search in Google Scholar

Zielińska A, Carreiro F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731. https://doi.org/10.3390/molecules25163731. ZielińskaA CarreiroF OliveiraAM NevesA PiresB VenkateshDN Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology Molecules 2020 25 16 3731 https://doi.org/10.3390/molecules25163731. 10.3390/molecules25163731746453232824172 Search in Google Scholar

Khaira R, Sharma J, Saini V. Development and characterization of nanoparticles for the delivery of gemcitabine hydrochloride. ScientificWorldJournal. 2014;2014(1):6. https://doi.org/10.1155/2014/560962. KhairaR SharmaJ SainiV Development and characterization of nanoparticles for the delivery of gemcitabine hydrochloride ScientificWorldJournal 2014 2014 1 6 https://doi.org/10.1155/2014/560962. 10.1155/2014/560962392556424592173 Search in Google Scholar

Chaturvedi S, Rajasekar E, Natarajan S, Multiobjective building design optimization under operational uncertainties using the NSGA II algorithm. Buildings. 2020;10(5):88. https://doi.org/10.3390/buildings10050088. ChaturvediS RajasekarE NatarajanS Multiobjective building design optimization under operational uncertainties using the NSGA II algorithm Buildings 2020 10 5 88 https://doi.org/10.3390/buildings10050088. 10.3390/buildings10050088 Search in Google Scholar

Yuan Z, Ye Y, Gao F, Yuan H, Lan M, Lou K, et al. Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. Int J Pharm. 2013;446(1–2):191–198. https://doi.org/10.1016/j.ijpharm.2013.02.024. YuanZ YeY GaoF YuanH LanM LouK Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release Int J Pharm 2013 446 1–2 191 198 https://doi.org/10.1016/j.ijpharm.2013.02.024. 10.1016/j.ijpharm.2013.02.02423422276 Search in Google Scholar

Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125(1):75–84. https://doi.org/10.1016/j.ces.2014.08.046. LeeJH YeoY Controlled drug release from pharmaceutical nanocarriers Chem Eng Sci 2015 125 1 75 84 https://doi.org/10.1016/j.ces.2014.08.046. 10.1016/j.ces.2014.08.046 Search in Google Scholar

Kalaivani R, Maruthupandy M, Muneeswaran T, Hameedha Beevi A, Anand M, Ramakritinan CM, et al. Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Lab Med. 2018;2(1):30–35. https://doi.org/10.1016/j.flm.2018.04.002. KalaivaniR MaruthupandyM MuneeswaranT Hameedha BeeviA AnandM RamakritinanCM Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications Front Lab Med 2018 2 1 30 35 https://doi.org/10.1016/j.flm.2018.04.002. 10.1016/j.flm.2018.04.002 Search in Google Scholar

Khan MA, Zafaryab M, Mehdi SH, Ahmad I, Rizvi MMA. Characterization and anti-proliferative activity of curcumin loaded chitosan nanoparticles in cervical cancer. Int J Biol Macromol. 2016;93(1):242–253. https://doi.org/10.1016/j.ijbiomac.2016.08.050. KhanMA ZafaryabM MehdiSH AhmadI RizviMMA Characterization and anti-proliferative activity of curcumin loaded chitosan nanoparticles in cervical cancer Int J Biol Macromol 2016 93 1 242 253 https://doi.org/10.1016/j.ijbiomac.2016.08.050. 10.1016/j.ijbiomac.2016.08.050 Search in Google Scholar

Hu D, Lin C, Liu L, Li S, Zhao Y. Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids. J Food Eng. 2012;109(3):545–552. https://doi.org/10.1016/j.jfoodeng.2011.10.025. HuD LinC LiuL LiS ZhaoY Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids J Food Eng 2012 109 3 545 552 https://doi.org/10.1016/j.jfoodeng.2011.10.025. 10.1016/j.jfoodeng.2011.10.025 Search in Google Scholar

Ciesĺik-Boczula K, Szwed J, Jaszczyszyn A, Gasiorowski K, Koll A. Interactions of dihydrochloride fluphenazine with DPPC liposomes: ATR-IR and 31 P NMR studies. J Phys Chem B. 2009;113(47):15495–15502. https://doi.org/10.1021/jp904805t. Ciesĺik-BoczulaK SzwedJ JaszczyszynA GasiorowskiK KollA Interactions of dihydrochloride fluphenazine with DPPC liposomes: ATR-IR and 31 P NMR studies J Phys Chem B 2009 113 47 15495 15502 https://doi.org/10.1021/jp904805t. 10.1021/jp904805t Search in Google Scholar

Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339(16):2693–2700. https://doi.org/10.1016/j.carres.2004.09.007. QiL XuZ JiangX HuC ZouX Preparation and antibacterial activity of chitosan nanoparticles Carbohydr Res 2004 339 16 2693 2700 https://doi.org/10.1016/j.carres.2004.09.007. 10.1016/j.carres.2004.09.007 Search in Google Scholar

Tang ESK, Huang M, Lim LY. Ultrasonication of chitosan and chitosan nanoparticles. Int J Pharm. 2003;265(1–2):103–114. https://doi.org/10.1016/S0378-5173(03)00408-3. TangESK HuangM LimLY Ultrasonication of chitosan and chitosan nanoparticles Int J Pharm 2003 265 1–2 103 114 https://doi.org/10.1016/S0378-5173(03)00408-3. 10.1016/S0378-5173(03)00408-3 Search in Google Scholar

Knaul JZ, Hudson SM, Creber KAM. Improved mechanical properties of chitosan fibers. J Appl Polym Sci. 1999;72(13):1721–1732. https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1721::AID-APP8>3.0.CO;2-V. KnaulJZ HudsonSM CreberKAM Improved mechanical properties of chitosan fibers J Appl Polym Sci 1999 72 13 1721 1732 https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1721::AID-APP8>3.0.CO;2-V. 10.1002/(SICI)1097-4628(19990624)72:13<1721::AID-APP8>3.0.CO;2-V Search in Google Scholar

eISSN:
2083-134X
Langue:
Anglais