Accès libre

Experimental and theoretical behavior of cementitious plates containing ethylene vinyl acetate reinforced with glass woven fabric under impact load

À propos de cet article

Citez

Alfayez S, Ali MAEM, Nehdi ML. Eco-efficient fiber-reinforced preplaced recycled aggregate concrete under impact loading, Infrastructures. 2019;4. https://doi.org/10.3390/infrastructures4020037. AlfayezS AliMAEM NehdiML Eco-efficient fiber-reinforced preplaced recycled aggregate concrete under impact loading Infrastructures 2019 4 https://doi.org/10.3390/infrastructures4020037. 10.3390/infrastructures4020037 Search in Google Scholar

Kennedy RP. A review of procedures for the analysis and design of concrete structures to resist missile impact effects, Nucl Eng Des. 1976;37:183–203. https://doi.org/10.1016/0029-5493(76)90015-7. KennedyRP A review of procedures for the analysis and design of concrete structures to resist missile impact effects Nucl Eng Des 1976 37 183 203 https://doi.org/10.1016/0029-5493(76)90015-7. 10.1016/0029-5493(76)90015-7 Search in Google Scholar

Das Adhikary S, Li B, Fujikake K, Alhadid MMA, Soliman AM, Nehdi ML, et al. Critical overview of blast resistance of different concrete types. Mag Concr Res. 2014;66:72–81. https://doi.org/10.1680/macr.13.00096. Das AdhikaryS LiB FujikakeK AlhadidMMA SolimanAM NehdiML Critical overview of blast resistance of different concrete types Mag Concr Res 2014 66 72 81 https://doi.org/10.1680/macr.13.00096. 10.1680/macr.13.00096 Search in Google Scholar

Yoo D-Y, Banthia N. Impact resistance of fiber-reinforced concrete – A review. Cem Concr Compos. 2019;104:103389. https://doi.org/10.1016/j.cemconcomp.2019.103389. YooD-Y BanthiaN Impact resistance of fiber-reinforced concrete – A review Cem Concr Compos 2019 104 103389. https://doi.org/10.1016/j.cemconcomp.2019.103389. 10.1016/j.cemconcomp.2019.103389 Search in Google Scholar

Vadivel TS, Thenmozhi R, Doddurani M. Experimental behaviour of waste tyre rubber aggregate concrete under impact loading. Iran J Sci Technol Trans Civ Eng. 2014;38:251–9. VadivelTS ThenmozhiR DodduraniM Experimental behaviour of waste tyre rubber aggregate concrete under impact loading Iran J Sci Technol Trans Civ Eng 2014 38 251 9 Search in Google Scholar

Alwesabi EAH, Bakar BHA, Alshaikh IMH, Zeyad AM, Altheeb A, Alghamdi H. Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber. Structures. 2021;33:4421–32. https://doi.org/10.1016/j.istruc.2021.07.011. AlwesabiEAH BakarBHA AlshaikhIMH ZeyadAM AltheebA AlghamdiH Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber Structures 2021 33 4421 32 https://doi.org/10.1016/j.istruc.2021.07.011. 10.1016/j.istruc.2021.07.011 Search in Google Scholar

Ismail ZZ, AL-Hashmi EA. Use of waste plastic in concrete mixture as aggregate replacement. Waste Manag. 2008;28:2041–7. https://doi.org/10.1016/j.wasman.2007.08.023. IsmailZZ AL-HashmiEA Use of waste plastic in concrete mixture as aggregate replacement Waste Manag 2008 28 2041 7 https://doi.org/10.1016/j.wasman.2007.08.023. 10.1016/j.wasman.2007.08.02317931848 Search in Google Scholar

Makul N, Fediuk R, Amran M, Zeyad AM, de Azevedo ARG, Klyuev S, et al. Capacity to develop recycled aggregate concrete in South East Asia. Buildings. 2021;11:234. https://doi.org/10.3390/buildings11060234. MakulN FediukR AmranM ZeyadAM de AzevedoARG KlyuevS Capacity to develop recycled aggregate concrete in South East Asia Buildings 2021 11 234 https://doi.org/10.3390/buildings11060234. 10.3390/buildings11060234 Search in Google Scholar

Makul N, Fediuk R, Amran M, Zeyad AM, Murali G, Vatin N, et al. Vasilev, use of recycled concrete aggregates in production of green cement-based concrete composites: A review. Crystals. 2021;11:232. https://doi.org/10.3390/cryst11030232. MakulN FediukR AmranM ZeyadAM MuraliG VatinN Vasilev, use of recycled concrete aggregates in production of green cement-based concrete composites: A review Crystals 2021 11 232 https://doi.org/10.3390/cryst11030232. 10.3390/cryst11030232 Search in Google Scholar

Marcilla A, Gómez A, Menargues S. TG/FTIR study of the thermal pyrolysis of EVA copolymers. J Anal Appl Pyrolysis. 2005;74:224–30. https://doi.org/10.1016/J.JAAP.2004.09.009. MarcillaA GómezA MenarguesS TG/FTIR study of the thermal pyrolysis of EVA copolymers J Anal Appl Pyrolysis 2005 74 224 30 https://doi.org/10.1016/J.JAAP.2004.09.009. 10.1016/j.jaap.2004.09.009 Search in Google Scholar

Uçar S, Ozkan AR, Yanik J, Karagöz S. The influence of the waste ethylene vinyl acetate copolymer on the thermal degradation of the waste polypropylene. Fuel Process Technol. 2008;89:1201–6. https://doi.org/10.1016/J.FUPROC.2008.05.010. UçarS OzkanAR YanikJ KaragözS The influence of the waste ethylene vinyl acetate copolymer on the thermal degradation of the waste polypropylene Fuel Process Technol 2008 89 1201 6 https://doi.org/10.1016/J.FUPROC.2008.05.010. 10.1016/j.fuproc.2008.05.010 Search in Google Scholar

Lopes D, Ferreira MJ, Russo R, Dias JM. Natural and synthetic rubber/waste – Ethylene-vinyl acetate composites for sustainable application in the footwear industry. J Clean Prod. 2015;92:230–6. https://doi.org/10.1016/j.jclepro.2014.12.063. LopesD FerreiraMJ RussoR DiasJM Natural and synthetic rubber/waste – Ethylene-vinyl acetate composites for sustainable application in the footwear industry J Clean Prod 2015 92 230 6 https://doi.org/10.1016/j.jclepro.2014.12.063. 10.1016/j.jclepro.2014.12.063 Search in Google Scholar

Rimez B, Rahier H, Van Assche G, Artoos T, Biesemans M, Van Mele B. The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part I: Experimental study of the degradation mechanism. Polym Degrad Stab. 2008;93:800–10. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2008.01.010. RimezB RahierH Van AsscheG ArtoosT BiesemansM Van MeleB The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part I: Experimental study of the degradation mechanism Polym Degrad Stab 2008 93 800 10 https://doi.org/10.1016/J.POLYMDEGRADSTAB.2008.01.010. 10.1016/j.polymdegradstab.2008.01.010 Search in Google Scholar

Lima PRL, Leite MB, Santiago EQR. Recycled lightweight concrete made from footwear industry waste and CDW. Waste Manag. 2010;30:1107–13. https://doi.org/10.1016/J.WASMAN.2010.02.007. LimaPRL LeiteMB SantiagoEQR Recycled lightweight concrete made from footwear industry waste and CDW Waste Manag 2010 30 1107 13 https://doi.org/10.1016/J.WASMAN.2010.02.007. 10.1016/j.wasman.2010.02.00720189792 Search in Google Scholar

Zuchetto L, Oliveira MF, Tutikian B. Dynamic stiffness evaluation of floor covering system made out of recycled EVA – Ethylene vinyl acetate. In: INTER-NOISE 2015, 44th International Congress and Exposition on Noise Control Engineering. San francisko, California; 2015. ZuchettoL OliveiraMF TutikianB Dynamic stiffness evaluation of floor covering system made out of recycled EVA – Ethylene vinyl acetate In: INTER-NOISE 2015, 44th International Congress and Exposition on Noise Control Engineering San francisko, California 2015 Search in Google Scholar

Magbool HM, Zeyad AM. The effect of various steel fibers and volcanic pumice powder on fracture characteristics of self-compacting concrete. Constr Build Mater. 2021;312:125444. https://doi.org/10.1016/j.conbuildmat.2021.125444. MagboolHM ZeyadAM The effect of various steel fibers and volcanic pumice powder on fracture characteristics of self-compacting concrete Constr Build Mater 2021 312 125444. https://doi.org/10.1016/j.conbuildmat.2021.125444. 10.1016/j.conbuildmat.2021.125444 Search in Google Scholar

Balcikanli Bankir M, Sevim UK. Performance optimization of hybrid fiber concrete according to mechanical properties. Constr Build Mater. 2020;261:119952. https://doi.org/10.1016/J.CONBUILDMAT.2020.119952. Balcikanli BankirM SevimUK Performance optimization of hybrid fiber concrete according to mechanical properties Constr Build Mater 2020 261 119952. https://doi.org/10.1016/J.CONBUILDMAT.2020.119952. 10.1016/j.conbuildmat.2020.119952 Search in Google Scholar

Anil Ö, Kantar E, Yilmaz MC. Low velocity impact behavior of RC slabs with different support types. Constr Build Mater. 2015;93:1078–88. https://doi.org/10.1016/J.CONBUILDMAT.2015.05.039. AnilÖ KantarE YilmazMC Low velocity impact behavior of RC slabs with different support types Constr Build Mater 2015 93 1078 88 https://doi.org/10.1016/J.CONBUILDMAT.2015.05.039. 10.1016/j.conbuildmat.2015.05.039 Search in Google Scholar

Mubin SM, Syamsir A, Mohamad D. A review on experimental and numerical studies of Glass Fibre Reinforced Polymer (GFRP) strips strengthened Reinforced Concrete (RC) slab subjected to low velocity impact. In: 2nd International Conference on Disaster Management. IOP Publishing; 2021. https://doi.org/10.1088/1755-1315/708/1/012075. MubinSM SyamsirA MohamadD A review on experimental and numerical studies of Glass Fibre Reinforced Polymer (GFRP) strips strengthened Reinforced Concrete (RC) slab subjected to low velocity impact In: 2nd International Conference on Disaster Management IOP Publishing 2021 https://doi.org/10.1088/1755-1315/708/1/012075. 10.1088/1755-1315/708/1/012075 Search in Google Scholar

Strong AB. Fundamentals of composites manufacturing – materials, methods, and applications, 2nd, Society of Manufacturing Engineers (SME); 2008. StrongAB Fundamentals of composites manufacturing – materials, methods, and applications 2nd Society of Manufacturing Engineers (SME) 2008 Search in Google Scholar

Chawla KK. Composite materials, 4th, Springer Nature Switzerland; 2019. https://doi.org/10.1007/978-3-030-28983-6. ChawlaKK Composite materials 4th Springer Nature Switzerland 2019 https://doi.org/10.1007/978-3-030-28983-6. 10.1007/978-3-030-28983-6 Search in Google Scholar

Balasubramanian M. Composite materials and processing. 1st ed. CRC Press; 2013. BalasubramanianM Composite materials and processing 1st ed. CRC Press 2013 10.1201/b15551 Search in Google Scholar

TS EN 998-2, Specification for mortar for masonry - Part 2: Masonry Mortar, Ankara; 2017. TS EN 998-2 Specification for mortar for masonry - Part 2 Masonry Mortar Ankara 2017 Search in Google Scholar

ASTM C349-02. Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). West Conshohocken, PA, www.astm.org; 2002. https://doi.org/10.1520/C0349-02. ASTM C349-02 Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure) West Conshohocken, PA www.astm.org; 2002 https://doi.org/10.1520/C0349-02. 10.1520/C0349-02 Search in Google Scholar

Yang X, Liu J, Li H, Ren Q. Performance and ITZ of pervious concrete modified by vinyl acetate and ethylene copolymer dispersible powder. Constr Build Mater. 2020;235:117532. https://doi.org/10.1016/J.CONBUILDMAT.2019.117532. YangX LiuJ LiH RenQ Performance and ITZ of pervious concrete modified by vinyl acetate and ethylene copolymer dispersible powder Constr Build Mater 2020 235 117532. https://doi.org/10.1016/J.CONBUILDMAT.2019.117532. 10.1016/j.conbuildmat.2019.117532 Search in Google Scholar

Dong Z, Wu G,. Zhao XL, Zhu H, Wei Y, Yan Z. Mechanical properties of discrete BFRP needles reinforced seawater sea-sand concrete-filled GFRP tubular stub columns. Constr Build Mater. 2020;244:118330. https://doi.org/10.1016/J.CONBUILDMAT.2020.118330. DongZ WuG ZhaoXL ZhuH WeiY YanZ Mechanical properties of discrete BFRP needles reinforced seawater sea-sand concrete-filled GFRP tubular stub columns Constr Build Mater 2020 244 118330. https://doi.org/10.1016/J.CONBUILDMAT.2020.118330 10.1016/j.conbuildmat.2020.118330 Search in Google Scholar

Huang L, Sun X, Yan L, Kasal B. Impact behavior of concrete columns confined by both GFRP tube and steel spiral reinforcement. Constr Build Mater. 2017;131:438–448. https://doi.org/10.1016/J.CONBUILDMAT.2016.11.095. HuangL SunX YanL KasalB Impact behavior of concrete columns confined by both GFRP tube and steel spiral reinforcement Constr Build Mater 2017 131 438 448 https://doi.org/10.1016/J.CONBUILDMAT.2016.11.095. 10.1016/j.conbuildmat.2016.11.095 Search in Google Scholar

Cheng S, Feng P, Li Z, Du J. Mechanical behavior of cylindrical GFRP chimney liners subjected to axial tension. Compos Part B Eng. 2019;177:107411. https://doi.org/10.1016/J.COMPOSITESB.2019.107411. ChengS FengP LiZ DuJ Mechanical behavior of cylindrical GFRP chimney liners subjected to axial tension Compos Part B Eng 2019 177 107411. https://doi.org/10.1016/J.COMPOSITESB.2019.107411. 10.1016/j.compositesb.2019.107411 Search in Google Scholar

Alhassan EA, Olasehinde DA, Musonda A, Odeniyi OM. Tensile and flexural behaviour of steel materials used in the construction of crop processing machines. In: IOP Conference Sereies Earth and Environmental Science. IOP Publishing, Kwara State; 2020. https://doi.org/doi:10.1088/1755-1315/445/1/012044. AlhassanEA OlasehindeDA MusondaA OdeniyiOM Tensile and flexural behaviour of steel materials used in the construction of crop processing machines In: IOP Conference Sereies Earth and Environmental Science IOP Publishing, Kwara State 2020 https://doi.org/doi:10.1088/1755-1315/445/1/012044. 10.1088/1755-1315/445/1/012044 Search in Google Scholar

Wang W, Chouw N. Experimental and theoretical studies of flax FRP strengthened coconut fibre reinforced concrete slabs under impact loadings. Constr Build Mater. 2018;171:546–557. https://doi.org/10.1016/j.conbuildmat.2018.03.149. WangW ChouwN Experimental and theoretical studies of flax FRP strengthened coconut fibre reinforced concrete slabs under impact loadings Constr Build Mater 2018 171 546 557 https://doi.org/10.1016/j.conbuildmat.2018.03.149. 10.1016/j.conbuildmat.2018.03.149 Search in Google Scholar

Szuladzinski G. Formulas for mechanical and structural shock and impact. CRC Press/Taylor & Francis Group; 2010. SzuladzinskiG Formulas for mechanical and structural shock and impact CRC Press/Taylor & Francis Group 2010 10.1201/9781420065572 Search in Google Scholar

Szuladzinski G. Mass-plate impact parameters for the elastic range. Acta Mech. 2008;200:111–125. https://doi.org/10.1007/s00707-008-0578-5. SzuladzinskiG Mass-plate impact parameters for the elastic range Acta Mech 2008 200 111 125 https://doi.org/10.1007/s00707-008-0578-5. 10.1007/s00707-008-0578-5 Search in Google Scholar

Swamy RN. The elastic properties of structural lightweight concrete. Proc Inst Civ Eng. 1975;2:381–394. SwamyRN The elastic properties of structural lightweight concrete Proc Inst Civ Eng 1975 2 381 394 10.1680/iicep.1975.3671 Search in Google Scholar

A.C. 318. Building code requirements for structural concrete (ACI 318-95) and commentary (ACI 318R-95); 1995. A.C. 318 Building code requirements for structural concrete (ACI 318-95) and commentary (ACI 318R-95) 1995 Search in Google Scholar

Jin-Keun K, Hoon K, Jae-Ho N. Estimation of mechanical properties of concrete in early age by resonance frequency test. Mag Korea Concr Inst. 1995;7:164–171. https://doi.org/10.22636/MKCI.1995.7.5.164. Jin-KeunK HoonK Jae-HoN Estimation of mechanical properties of concrete in early age by resonance frequency test Mag Korea Concr Inst 1995 7 164 171 https://doi.org/10.22636/MKCI.1995.7.5.164. Search in Google Scholar

eISSN:
2083-134X
Langue:
Anglais