À propos de cet article

Citez

Vekas L. Magnetic nanofluids properties and some applications. Rom J Phys. 2004;49(9–10):707–21. VekasL Magnetic nanofluids properties and some applications Rom J Phys 2004 49 9–10 707 21 Search in Google Scholar

Genchi GG, Marino A, Grillone A, Pezzini I, Ciofani G. Remote control of cellular functions: The role of smart nanomaterials in the medicine of the future. Adv Healthc Mater. 2017;6(9):1700002. https://doi.org/10.1002/adhm.201700002 GenchiGG MarinoA GrilloneA PezziniI CiofaniG Remote control of cellular functions: The role of smart nanomaterials in the medicine of the future Adv Healthc Mater 2017 6 9 1700002. https://doi.org/10.1002/adhm.201700002 10.1002/adhm.20170000228338285 Search in Google Scholar

Abdi H, Motlagh SY, Soltanipour H. Study of magnetic nanofluid flow in a square cavity under the magnetic field of a wire carrying the electric current in turbulence regime. Results Phys. 2020;18:103224. https://doi.org/10.1016/j.rinp.2020.103224 AbdiH MotlaghSY SoltanipourH Study of magnetic nanofluid flow in a square cavity under the magnetic field of a wire carrying the electric current in turbulence regime Results Phys 2020 18 103224. https://doi.org/10.1016/j.rinp.2020.103224 10.1016/j.rinp.2020.103224 Search in Google Scholar

Szalai I, Dietrich S. Phase transitions and ordering of confined dipolar fluids. Eur Phys J E. 2009;28(3):347–59. https://doi.org/10.1140/epje/i2008-10424-2 SzalaiI DietrichS Phase transitions and ordering of confined dipolar fluids Eur Phys J E 2009 28 3 347 59 https://doi.org/10.1140/epje/i2008-10424-2 10.1140/epje/i2008-10424-219229569 Search in Google Scholar

Liang YJ, Xie J, Yu J, Zheng Z, Liu F, Yang A. Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics. Nano Select. 2020;2(2):216–50. https://doi.org/10.1002/nano.202000169 LiangYJ XieJ YuJ ZhengZ LiuF YangA Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics Nano Select 2020 2 2 216 50 https://doi.org/10.1002/nano.202000169 10.1002/nano.202000169 Search in Google Scholar

Walter A, Garofalo A, Parat A, Martinez H, Felder-Flesch D, Begin-Colin S. Functionalization strategies and dendronization of iron oxide nanoparticles. Nanotechnol Rev. 2015;4(6):581–93. https://doi.org/10.1515/ntrev-2015-0014 WalterA GarofaloA ParatA MartinezH Felder-FleschD Begin-ColinS Functionalization strategies and dendronization of iron oxide nanoparticles Nanotechnol Rev 2015 4 6 581 93 https://doi.org/10.1515/ntrev-2015-0014 10.1515/ntrev-2015-0014 Search in Google Scholar

Das GK, Stark DT, Kennedy IM. Potential toxi-city of Up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction. Langmuir. 2014;30(27):8167–76. https://doi.org/10.1021/la501595f DasGK StarkDT KennedyIM Potential toxi-city of Up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction Langmuir 2014 30 27 8167 76 https://doi.org/10.1021/la501595f 10.1021/la501595f410079524971524 Search in Google Scholar

De Sousa ME, Van Raap MBF, Rivas PC, Zélis PM, Girardin P, Pasquevich GA, et al. Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia. J Phys Chem C. 2013;117(10):5436–45. https://doi.org/10.1021/jp311556b De SousaME Van RaapMBF RivasPC ZélisPM GirardinP PasquevichGA Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia J Phys Chem C 2013 117 10 5436 45 https://doi.org/10.1021/jp311556b 10.1021/jp311556b Search in Google Scholar

Lai CW, Low FW, Tai MF, Hamid SBA. Iron oxide nanoparticles decorated oleic acid for high colloidal stability. Adv Polym Technol. 2018;37(6):1712–21. https://doi.org/10.1002/adv.21829 LaiCW LowFW TaiMF HamidSBA Iron oxide nanoparticles decorated oleic acid for high colloidal stability Adv Polym Technol 2018 37 6 1712 21 https://doi.org/10.1002/adv.21829 10.1002/adv.21829 Search in Google Scholar

Rahme K, Dagher N. Chemistry routes for copolymer synthesis containing peg for targeting, imaging, and drug delivery purposes. Pharmaceutics. 2019;11(7):327. https://doi.org/10.3390/pharmaceutics11070327 RahmeK DagherN Chemistry routes for copolymer synthesis containing peg for targeting, imaging, and drug delivery purposes Pharmaceutics 2019 11 7 327 https://doi.org/10.3390/pharmaceutics11070327 10.3390/pharmaceutics11070327668065331336703 Search in Google Scholar

Zhang X, Guo Z, Zhang X, Gong L, Dong X, Fu Y, et al. Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy. Sci Rep. 2019;9(1):5212. https://doi.org/10.1038/s41598-019-41482-w ZhangX GuoZ ZhangX GongL DongX FuY Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy Sci Rep 2019 9 1 5212 https://doi.org/10.1038/s41598-019-41482-w 10.1038/s41598-019-41482-w643570730914696 Search in Google Scholar

Zhang X, Tian G, Yin W, Wang L, Zheng X, Yan L, et al. Controllable generation of nitric oxide by near-infrared-sensitized upconversion nanoparticles for tumor therapy. Adv Funct Mater. 2015;25(20):3049–3056. https://doi.org/10.1002/adfm.201404402 ZhangX TianG YinW WangL ZhengX YanL Controllable generation of nitric oxide by near-infrared-sensitized upconversion nanoparticles for tumor therapy Adv Funct Mater 2015 25 20 3049 3056 https://doi.org/10.1002/adfm.201404402 10.1002/adfm.201404402 Search in Google Scholar

Xiong F, Li J, Wang H, Chen Y, Cheng J, Zhu J. Synthesis, properties and application of a novel series of one-ended monooleate-modified poly(ethylene glycol) with active carboxylic terminal. Polymer (Guildf). 2006;47(19):6636–41. https://doi.org/10.1016/j.polymer.2006.07.020 XiongF LiJ WangH ChenY ChengJ ZhuJ Synthesis, properties and application of a novel series of one-ended monooleate-modified poly(ethylene glycol) with active carboxylic terminal Polymer (Guildf) 2006 47 19 6636 41 https://doi.org/10.1016/j.polymer.2006.07.020 10.1016/j.polymer.2006.07.020 Search in Google Scholar

Magro M, Vianello F. Bare iron oxide nanoparticles: Surface tunability for biomedical, sensing and environmental applications. Nanomaterials. 2019;9(11):1608. https://doi.org/10.3390/nano9111608 MagroM VianelloF Bare iron oxide nanoparticles: Surface tunability for biomedical, sensing and environmental applications Nanomaterials 2019 9 11 1608 https://doi.org/10.3390/nano9111608 10.3390/nano9111608691562431726776 Search in Google Scholar

Schwaminger SP, Fraga-García P, Blank-Shim SA, Straub T, Haslbeck M, Muraca F, et al. Magnetic one-step purification of his-tagged protein by bare iron oxide nanoparticles. ACS Omega. 2019;4(2):3790–9. https://doi.org/10.1021/acsomega.8b03348 SchwamingerSP Fraga-GarcíaP Blank-ShimSA StraubT HaslbeckM MuracaF Magnetic one-step purification of his-tagged protein by bare iron oxide nanoparticles ACS Omega 2019 4 2 3790 9 https://doi.org/10.1021/acsomega.8b03348 10.1021/acsomega.8b03348664844631459591 Search in Google Scholar

Oriekhova O, Stoll S. Investigation of FeCl3 induced coagulation processes using electrophoretic measurement, nanoparticle tracking analysis and dynamic light scattering: Importance of pH and colloid surface charge. Colloids Surfaces A. 2014;461:212–9. https://doi.org/10.1016/j.colsurfa.2014.07.049 OriekhovaO StollS Investigation of FeCl3 induced coagulation processes using electrophoretic measurement, nanoparticle tracking analysis and dynamic light scattering: Importance of pH and colloid surface charge Colloids Surfaces A 2014 461 212 9 https://doi.org/10.1016/j.colsurfa.2014.07.049 10.1016/j.colsurfa.2014.07.049 Search in Google Scholar

Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev. 2008;108(6):2064–2110. https://doi.org/10.1021/cr068445e LaurentS ForgeD PortM RochA RobicC ElstLV Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications Chem Rev 2008 108 6 2064 2110 https://doi.org/10.1021/cr068445e 10.1021/cr068445e18543879 Search in Google Scholar

Yang XC, Shang YL, Li YH, Zhai J, Foster NR, Li YX, et al. Synthesis of monodisperse iron oxide nanoparticles without surfactants. J Nanomater. 2014;1–5. https://doi.org/10.1155/2014/740856 YangXC ShangYL LiYH ZhaiJ FosterNR LiYX Synthesis of monodisperse iron oxide nanoparticles without surfactants J Nanomater 2014 1 5 https://doi.org/10.1155/2014/740856 10.1155/2014/740856 Search in Google Scholar

Laurent S, Henoumont C, Stanicki D, Boutry S, Lipani E, Belaid S, et al. MRI contrast agents: From molecules to particles. Springer: Singapore; 2017. LaurentS HenoumontC StanickiD BoutryS LipaniE BelaidS MRI contrast agents: From molecules to particles Springer Singapore 2017 10.1007/978-981-10-2529-7 Search in Google Scholar

Tombácz E, Majzik A, Horvát ZS, Illés E. Magnetite in aqueous medium: Coating its surface and surface coated with it. Rom Rep Phys. 2006;58(3):281–6. TombáczE MajzikA HorvátZS IllésE Magnetite in aqueous medium: Coating its surface and surface coated with it Rom Rep Phys 2006 58 3 281 6 Search in Google Scholar

Sun ZX, Su FW, Forsling W, Samskog PO. Surface characteristics of magnetite in aqueous suspension. J Colloid Interface Sci. 1998;197(1):151–9. https://doi.org/10.1006/jcis.1997.5239 SunZX SuFW ForslingW SamskogPO Surface characteristics of magnetite in aqueous suspension J Colloid Interface Sci 1998 197 1 151 9 https://doi.org/10.1006/jcis.1997.5239 10.1006/jcis.1997.52399466855 Search in Google Scholar

Shete PB, Patil RM, Tiwale BM, Pawar SH. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater. 2015;377:406–10. https://doi.org/10.1016/j.jmmm.2014.10.137 ShetePB PatilRM TiwaleBM PawarSH Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications J Magn Magn Mater 2015 377 406 10 https://doi.org/10.1016/j.jmmm.2014.10.137 10.1016/j.jmmm.2014.10.137 Search in Google Scholar

Jadhav NV., Prasad AI, Kumar A, Mishra R, Dhara S, Babu KR, et al. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surfaces B. 2013;108:158–68. https://doi.org/10.1016/j.colsurfb.2013.02.035 JadhavNV PrasadAI KumarA MishraR DharaS BabuKR Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications Colloids Surfaces B 2013 108 158 68 https://doi.org/10.1016/j.colsurfb.2013.02.035 10.1016/j.colsurfb.2013.02.035 Search in Google Scholar

Liu X, Kaminski MD, Guan Y, Chen H, Liu H, Rosengart AJ. Preparation and characterization of hydrophobic superparamagnetic magnetite gel. J Magn Magn Mater. 2006;306(2):248–53. https://doi.org/10.1016/j.jmmm.2006.03.049 LiuX KaminskiMD GuanY ChenH LiuH RosengartAJ Preparation and characterization of hydrophobic superparamagnetic magnetite gel J Magn Magn Mater 2006 306 2 248 53 https://doi.org/10.1016/j.jmmm.2006.03.049 10.1016/j.jmmm.2006.03.049 Search in Google Scholar

Mikelashvili V, Kekutia S, Markhulia J, Saneblidze L, Jabua Z, Almásy L, et al. Folic acid conjugation of magnetite nanoparticles using pulsed electrohydraulic discharges. J Serbian Chem Soc. 2021;86(2):181–94. https://doi.org/10.2298/JSC200414053M MikelashviliV KekutiaS MarkhuliaJ SaneblidzeL JabuaZ AlmásyL Folic acid conjugation of magnetite nanoparticles using pulsed electrohydraulic discharges J Serbian Chem Soc 2021 86 2 181 94 https://doi.org/10.2298/JSC200414053M 10.2298/JSC200414053M Search in Google Scholar

Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. PRIMUS: A Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr. 2003;36(5):1277–82. https://doi.org/10.1107/S0021889803012779 KonarevPV VolkovVV SokolovaAV KochMHJ SvergunDI PRIMUS: A Windows PC-based system for small-angle scattering data analysis J Appl Crystallogr 2003 36 5 1277 82 https://doi.org/10.1107/S0021889803012779 10.1107/S0021889803012779 Search in Google Scholar

Hopkins JB, Gillilan RE, Skou S. BioXTAS RAW: Improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr. 2017;50(5):1545–53. https://doi.org/10.1107/S1600576717011438 HopkinsJB GillilanRE SkouS BioXTAS RAW: Improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis J Appl Crystallogr 2017 50 5 1545 53 https://doi.org/10.1107/S1600576717011438 10.1107/S1600576717011438 Search in Google Scholar

Svergun DI. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J. 1999;76(6):2879–86. https://doi.org/10.1016/S0006-3495(99)77443-6 SvergunDI Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing Biophys J 1999 76 6 2879 86 https://doi.org/10.1016/S0006-3495(99)77443-6 10.1016/S0006-3495(99)77443-6 Search in Google Scholar

Bressler I, Pauw BR, Thünemann AF. McSAS: Software for the retrieval of model parameter distributions from scattering patterns. J Appl Crystallogr. 2015;48(3):962–9. https://doi.org/10.1107/S1600576715007347 BresslerI PauwBR ThünemannAF McSAS: Software for the retrieval of model parameter distributions from scattering patterns J Appl Crystallogr 2015 48 3 962 9 https://doi.org/10.1107/S1600576715007347 10.1107/S1600576715007347445398226089769 Search in Google Scholar

Maldonado-Camargo L, Unni M, Rinaldi C. Magnetic characterization of iron oxide nanoparticles for biomedical applications. Methods Mol Biol. 2017;1570:47–1. https://doi.org/10.1007/978-1-4939-6840-4_4 Maldonado-CamargoL UnniM RinaldiC Magnetic characterization of iron oxide nanoparticles for biomedical applications Methods Mol Biol 2017 1570 47 1 https://doi.org/10.1007/978-1-4939-6840-4_4 10.1007/978-1-4939-6840-4_4660460828238129 Search in Google Scholar

Almásy L, Creanga D, Nadejde C, Rosta L, Pomjakushina E, Ursache-Oprisan M. Wet milling versus co-precipitation in magnetite ferrofluid preparation. J Serbian Chem Soc. 2015;80(3):367–76. https://doi.org/10.2298/JSC140313053A AlmásyL CreangaD NadejdeC RostaL PomjakushinaE Ursache-OprisanM Wet milling versus co-precipitation in magnetite ferrofluid preparation J Serbian Chem Soc 2015 80 3 367 76 https://doi.org/10.2298/JSC140313053A 10.2298/JSC140313053A Search in Google Scholar

Huang Z, Tang F. Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres. J Colloid Interface Sci. 2005;281(2):432–6. https://doi.org/10.1016/J.JCIS.2004.08.121 HuangZ TangF Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres J Colloid Interface Sci 2005 281 2 432 6 https://doi.org/10.1016/J.JCIS.2004.08.121 10.1016/j.jcis.2004.08.12115571699 Search in Google Scholar

Pacakova B, Kubickova S, Reznickova A, Niznansky D, Vejpravova J. Spinel ferrite nanoparticles: Correlation of structure and magnetism. Magn Spinels - Synth Prop Appl. 2017:3–30. https://doi.org/10.5772/66074 PacakovaB KubickovaS ReznickovaA NiznanskyD VejpravovaJ Spinel ferrite nanoparticles: Correlation of structure and magnetism Magn Spinels - Synth Prop Appl 2017 3 30 https://doi.org/10.5772/66074 10.5772/66074 Search in Google Scholar

Sathish S, Balakumar S. Influence of physicochemical interactions of capping agent on magnetic properties of magnetite nanoparticles. Mater Chem Phys. 2016;173:364–71. https://doi.org/10.1016/j.matchemphys.2016.02.024 SathishS BalakumarS Influence of physicochemical interactions of capping agent on magnetic properties of magnetite nanoparticles Mater Chem Phys 2016 173 364 71 https://doi.org/10.1016/j.matchemphys.2016.02.024 10.1016/j.matchemphys.2016.02.024 Search in Google Scholar

Iyengar SJ, Joy M, Ghosh CK, Dey S, Kotnala RK, Ghosh S. Magnetic, X-ray and Mössbauer studies on magnetite/maghemite core-shell nanostructures fabricated through an aqueous route. RSC Adv. 2014;4(110):64919–29. https://doi.org/10.1039/c4ra11283k IyengarSJ JoyM GhoshCK DeyS KotnalaRK GhoshS Magnetic, X-ray and Mössbauer studies on magnetite/maghemite core-shell nanostructures fabricated through an aqueous route RSC Adv 2014 4 110 64919 29 https://doi.org/10.1039/c4ra11283k 10.1039/C4RA11283K Search in Google Scholar

Premaratne WA, Priyadarshana WM, Gunawardena SH, De Alwis AA. Synthesis of nanosilica from paddy husk ash and their surface functionalization. J Sci Univ Kelaniya Sri Lanka. 2014;8:33–8. https://doi.org/10.4038/josuk.v8i0.7238 PremaratneWA PriyadarshanaWM GunawardenaSH De AlwisAA Synthesis of nanosilica from paddy husk ash and their surface functionalization J Sci Univ Kelaniya Sri Lanka 2014 8 33 8 https://doi.org/10.4038/josuk.v8i0.7238 10.4038/josuk.v8i0.7238 Search in Google Scholar

Kumar TV, Prabhakar S, Raju GB. Adsorption of oleic acid at sillimanite/water interface. J Colloid Interface Sci. 2002;247(2):275–81. https://doi.org/10.1006/jcis.2001.8131 KumarTV PrabhakarS RajuGB Adsorption of oleic acid at sillimanite/water interface J Colloid Interface Sci 2002 247 2 275 81 https://doi.org/10.1006/jcis.2001.8131 10.1006/jcis.2001.813116290466 Search in Google Scholar

Lu C, Bhatt LR, Jun HY, Park SH, Chai KY. Carboxylpolyethylene glycol-phosphoric acid: A ligand for highly stabilized iron oxide nanoparticles. J Mater Chem. 2012;22(37):19806–11. https://doi.org/10.1039/c2jm34327d LuC BhattLR JunHY ParkSH ChaiKY Carboxylpolyethylene glycol-phosphoric acid: A ligand for highly stabilized iron oxide nanoparticles J Mater Chem 2012 22 37 19806 11 https://doi.org/10.1039/c2jm34327d 10.1039/c2jm34327d Search in Google Scholar

eISSN:
2083-134X
Langue:
Anglais