Accès libre

Selective crystallization of gamma glycine for NLO applications using magnesium sulfate (MgSO4) as an additive

À propos de cet article

Citez

Crystallization of γ-glycine in the presence of selected concentration (9 g/mL) of tailor-made additive magnesium sulfate heptahydrate salt (MgSO4·7H2O) has been studied at ambient temperature by adopting slow solvent evaporation procedure. The morphological modifications of glycine crystals grown from pure aqueous solutions of glycine and from glycine solutions containing magnesium species in the amount of 0.1 g/mL to 16 g/mL have been investigated thoroughly. The crystalline nature and phase identification of the crystalline material were confirmed by X-ray powder diffraction and SXRD studies. NMR studies revealed the information about the molecular conformation in solution, phase changes, functional groups and chemical environment. FT-IR spectra revealed distinct difference between α and γ-glycine polymorphs in the region around 880 cm−1 to 930 cm−1. The grown γ-glycine crystal had a lower cut-off value at 200 nm and the bandgap value evaluated from the Tauc plot was found to be 5.83 eV. The marked differences between α and γ-polymorphs of glycine were also revealed by DSC thermograms. The mechanical strength of the γ-glycine crystal was studied with the help of Vickers microhardness instrument. Kurtz-powder NLO study proved the generation of second harmonics (i.e. green light emission) in the grown γ-glycine crystal and its efficiency was calculated as 1.44 times better than that of the reference material potassium dihydrogen phosphate.

eISSN:
2083-134X
Langue:
Anglais