Accès libre

Investigation of RC Beams Rehabilitated with Angle-Ply Composite Laminate Plate

À propos de cet article

Citez

[1] Tounsi A, Benyoucef S., Int. J. Adhes. Adhes., (2007), 27: 207–215, doi:10.1016/j.ijadhadh.2006.01.00910.1016/j.ijadhadh.2006.01.009 Search in Google Scholar

[2] Tounsi A., Int. J. Solids. Struct., (2006), 43: 4154–4174, doi: 10.1016/j.ijsolstr.2005.03.07410.1016/j.ijsolstr.2005.03.074 Search in Google Scholar

[3] Benyoucef S, Tounsi A, Meftah S A and Adda Bedia EA., Compos. Interfaces., (2006), 13(7): 561–571, doi: 10.1163/15685540677844075810.1163/156855406778440758 Search in Google Scholar

[4] Vilnay O., Int. J. Cem. Compos. Light. Weight. Concr., (1988), 10 (2): 73–78, doi: 10.1016/0262-5075(88)90033-410.1016/0262-5075(88)90033-4 Search in Google Scholar

[5] Roberts TM., (1989). Approximate analysis of shear and normal stress concentrations in the adhesive layer of plated RC beams. Struct. Eng. 1989, 67 (12): 229–233. Search in Google Scholar

[6] Roberts TM, and Haji-Kazemi H. (1989). Theoretical study of the behavior of reinforced concrete beams strengthened by externally bonded steel plates. Proc. Inst. Civil. Eng., 87(2): 39–55 Search in Google Scholar

[7] Malek AM, Saadatmanesh H, and Ehsani MR.(1994). Prediction of failure load of RC beams strengthened with FRP plate due to stress concentration at the plate end. ACI. Struct. Journal., 95(1):142–152 Search in Google Scholar

[8] Robinovitch O. and Frostig Y., (200). Closed-form higher-order analysis of beams strengthened with FRP strips. J. Compos. Constr-ASCE, 4(2): 65–7410.1061/(ASCE)1090-0268(2000)4:2(65) Search in Google Scholar

[9] Ye JQ. Cem. Concr. Compos. (2001). 23(4–5), 411–417, doi:10.1016/S0958-9465(01)00015-410.1016/S0958-9465(01)00015-4 Search in Google Scholar

[10] Smith ST., and Teng JG., Eng. Struct. (2001). 23(7), 857–871, doi: 10.1016/S0141-0296(00)00090-010.1016/S0141-0296(00)00090-0 Search in Google Scholar

[11] Barnes RA., and Mays GC., Int. J. Adhes. (2001). 21, 495–502, doi: 10.1016/S0143-7496(01)00031-810.1016/S0143-7496(01)00031-8 Search in Google Scholar

[12] Stratford T., and Cadei J., Constr. Build. Mater. (2006). 20, 34–45, doi: 10.1016/j.conbuildmat.2005.06.04110.1016/j.conbuildmat.2005.06.041 Search in Google Scholar

[13] Bouazaoui Li A., Int. J. Adhes. (2008). 28, 101–108, doi: 10.1016/j.ijadhadh.2007.02.00610.1016/j.ijadhadh.2007.02.006 Search in Google Scholar

[14] Taljsten B., J. Mater. Civil. Eng. ASCE. (1997). 9(4), 206–12, doi: 10.1061/(ASCE)0899-1561(1997)9:4(206)10.1061/(ASCE)0899-1561(1997)9:4(206) Search in Google Scholar

[15] Smith ST., and Teng JG., Eng. Struct. (2002). 24(4), 385–395, doi: 10.1016/S0141-0296(01)00105-510.1016/S0141-0296(01)00105-5 Search in Google Scholar

[16] Smith ST., and Teng JG., Eng. Struct. (2002). 24(4), 397–417, doi: 10.1016/S0141-0296(01)00106-710.1016/S0141-0296(01)00106-7 Search in Google Scholar

[17] Denton SN, (2001). Analysis of stresses developed in FRP plated beams due to thermal effects. FRP. Compos. In. civil. Eng., 527–536 Search in Google Scholar

[18] Smith ST., Teng JG., Eng Struct. (2001). 23(7), 857–871, doi: 10.1016/S0141-0296(00)00090-010.1016/S0141-0296(00)00090-0 Search in Google Scholar

[19] Robinovitch O, and Frostig Y. (2001). Nonlinear higher-order analysis of cracked RCbeams strengthened with FRP strips. J. Struct. Eng- ASCE. 127(4): 381–389 Search in Google Scholar

[20] Shen HS., Teng JG., and Yang J., J. Eng. Mech. ASCE (2001). 127(4), 399–406, doi: 10.1061/(ASCE)0733-9399(2001)127:4(399)10.1061/(ASCE)0733-9399(2001)127:4(399) Search in Google Scholar

[21] Hassaine Daouadji T. Advan. Comput. Design. (2017). 2(1), 57-69, doi: 10.12989/acd.2017.2.1.05710.12989/acd.2017.2.1.057 Search in Google Scholar

[22] Bouakaz K, Hassaine Daouadji T, Meftah SA, Ameur M, and Adda Bedia EA (2014). A numerical analysis of steel beams strengthened with composite materials. Mech. Compos. Mater. 50(4): 685-69610.1007/s11029-014-9435-x Search in Google Scholar

[23] Krour B, Bernard F, and Tounsi A. Eng. Struct. (2014). 56, 218-227, doi: 10.1016/j.engstruct.2013.05.00810.1016/j.engstruct.2013.05.008 Search in Google Scholar

[24] Touati M, Tounsi A, and Benguediab M. Comput. Concrete. (2015). 15(3), 141-166, doi: 10.12989/cac.2015.15.3.33710.12989/cac.2015.15.3.337 Search in Google Scholar

[25] Hadji L, Hassaine Daouadji T, Meziane AM, and Adda Bedia EA. Steel. Compos. Struct. Int. J. (2016). 20(2), 413-429, doi: 10.12989/scs.2016.20.2.41310.12989/scs.2016.20.2.413 Search in Google Scholar

[26] Kara IF. Struct. Eng. Mech. Int. J. (2016). 59(4), 775-793, doi: 10.12989/sem.2016.59.4.77510.12989/sem.2016.59.4.775 Search in Google Scholar

[27] Elamary AS, Abd-ELwahab RK. Struct. Eng. Mech. Int. J. (2016). 57(5), 937-949, doi: 10.12989/sem.2016.57.5.93710.12989/sem.2016.57.5.937 Search in Google Scholar

[28] Gibson R.F., (1994). Principles of composites material mechanics. McGraw-Hill Inc. Search in Google Scholar

[29] Benkeddad. A, Grediac.M, Vautrin. A, (1995).On the transient hygroscopic stresses in laminated composite plates, composite Structures, Elsevier Applied Science, 30 (2), 201-20510.1016/0263-8223(94)00033-6 Search in Google Scholar

[30] Benkeddad. A, Grediac.M, Vautrin. A, (1996). Computation of transient hygroscopic stresses in laminated composite plates, Composites Science and Technology, 56, 869-87610.1016/0266-3538(96)00034-6 Search in Google Scholar

[31] Tounsi. A and Edda Bedia. E.A, (2003). Some observations on the evolution of transversal hygroscopic stresses in laminated composites plates: effect of anisotropy, Composite Structures, 59, 445-45410.1016/S0263-8223(02)00119-8 Search in Google Scholar

[32] Shen. C.H, (1981). Environmental effects in the elastic moduli of composite material. Environmental Effects on composite Materials, Springer. G. S, Ed, Technomic Publiching Company, 94-108. Search in Google Scholar

eISSN:
2066-6934
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other