Accès libre

The Maximum Locus of the Bloch Norm

  
07 juin 2023
À propos de cet article

Citez
Télécharger la couverture

For a Bloch function f in the unit ball in ℂn, we study the maximal locus of the Bloch norm of f; namely, the set Lf where the Bergman length of the gradient vector field of f attains its maximum. We prove that for n, the set Lf consists of a finite union of real analytic sets with dimensions at most 2n − 2. This is not the case for n = 1 as was proved earlier by Cima and Wogen. We also give some rigidity properties of the set Lf. In particular, we give some sufficient criteria for constructing extreme functions in the Little Bloch ball.