This work is licensed under the Creative Commons Attribution 4.0 International License.
Bajda, T., Mozgawa W., Manecki M., & Flis, J. (2011). Vibrational spectroscopic study of mimetite–pyromorphite solid solutions. Polyhedron, 30, 2479–2485. https://doi.org/10.1016/j.poly.2011.06.034BajdaT.MozgawaW.ManeckiM.FlisJ. (2011). Vibrational spectroscopic study of mimetite–pyromorphite solid solutions. Polyhedron, 30, 2479–2485. https://doi.org/10.1016/j.poly.2011.06.034Search in Google Scholar
Breemen, O., van, Bowes, D. R., Aftalion, M., & Żelaźniewicz, A. (1988). Devonian tectonothermal activity in the Sowie Góry gneissic block, Sudetes, southwestern Poland: evidence from Rb-Sr and U-Pb isotopic studies. Annales Societatis Geologorum Poloniae 58, 3–19.BreemenO.van BowesD. R.AftalionM.ŻelaźniewiczA. (1988). Devonian tectonothermal activity in the Sowie Góry gneissic block, Sudetes, southwestern Poland: evidence from Rb-Sr and U-Pb isotopic studies. Annales Societatis Geologorum Poloniae58, 3–19.Search in Google Scholar
Flis, J., Manecki, M., & Bajda, T. (2011). Solubility of pyromorphite Pb5(PO4)3Cl – mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta 75(7), 1858–1868. https://doi.org/10.1016/j.gca.2011.01.021FlisJ.ManeckiM.BajdaT. (2011). Solubility of pyromorphite Pb5(PO4)3Cl – mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta75(7), 1858–1868. https://doi.org/10.1016/j.gca.2011.01.021Search in Google Scholar
Frost, R.L., Bouzaid, J.M., Palmer, S. (2007). The structure of mimetite, arsenian pyromorphite and hedyphane – A Raman spectroscopic study. Polyhedron, 26, 2964–2970. https://doi.org/10.1016/j.poly.2007.01.038FrostR.L.BouzaidJ.M.PalmerS. (2007). The structure of mimetite, arsenian pyromorphite and hedyphane-A Raman spectroscopic study. Polyhedron, 26, 2964–2970. https://doi.org/10.1016/j.poly.2007.01.038Search in Google Scholar
Frost, R.L., Crane, M., Williams, P.A., & Kloprogge, J.T. (2003). Isomorphic substitution in vanadinite [Pb5(VO4)3Cl] – a Raman spectroscopic study. Journal of Raman Spectroscopy 34(3), 214–220. https://doi.org/10.1002/jrs.978FrostR.L.CraneM.WilliamsP.A.KloproggeJ.T. (2003). Isomorphic substitution in vanadinite [Pb5(VO4)3Cl] – a Raman spectroscopic study. Journal of Raman Spectroscopy34(3), 214–220. https://doi.org/10.1002/jrs.978Search in Google Scholar
Inegbenebor, A.I., Thomas, J.H., & Williams, P.A. (1989). The chemical stability of mimetite and distribution coefficients for pyromorphite-mimetite solid solutions. Mineralogical Magazine 53, 363–371.InegbeneborA.I.ThomasJ.H.WilliamsP.A. (1989). The chemical stability of mimetite and distribution coefficients for pyromorphite-mimetite solid solutions. Mineralogical Magazine53, 363–371.Search in Google Scholar
Janicka, U., Bajda, T., Topolska, J., & Manecki, M. (2014). Optimization of synthesis conditions of pyromorphite-vanadynite and mimetite-vanadynite solid solution series. Geology, Geophysics and Environment 40(1), 88–88.JanickaU.BajdaT.TopolskaJ.ManeckiM. (2014). Optimization of synthesis conditions of pyromorphite-vanadynite and mimetite-vanadynite solid solution series. Geology, Geophysics and Environment40(1), 88–88.Search in Google Scholar
Jastrzębski, M., Budzyń, B., Żelaźniewicz, A., Konečný, P., Sláma, J., Kozub-Budzyń, G. A., Skrzypek, E., & Jaźwa, A. (2021). Eo-Variscan metamorphism in the Bohemian Massif: Thermodynamic modelling and monazite geochronology of gneisses and granulites of the Góry Sowie Massif, SW Poland. Journal of Metamorphic Geology, 39(6), 751–779.JastrzębskiM.BudzyńB.ŻelaźniewiczA.KonečnýP.SlámaJ.Kozub-BudzyńG. A.SkrzypekE.JaźwaA. (2021). Eo-Variscan metamorphism in the Bohemian Massif: Thermodynamic modelling and monazite geochronology of gneisses and granulites of the Góry Sowie Massif, SW Poland. Journal of Metamorphic Geology, 39(6), 751–779.Search in Google Scholar
Keim, M.F., & Markl, G. (2015). Weathering of galena: Mineralogical processes, hydrothermal fluid path modeling, and estimation of the growth rate of pyromorphite. American Mineralogist 100(7), 1584–1594. https://doi.org/10.2138/am-2015-5183KeimM.F.MarklG. (2015). Weathering of galena: Mineralogical processes, hydrothermal fluid path modeling, and estimation of the growth rate of pyromorphite. American Mineralogist100(7), 1584–1594. https://doi.org/10.2138/am-2015-5183Search in Google Scholar
Keper, J.C. (2004). The Goodsprings mining district, Clark County. In: Minerals of Nevada (S.B. Castor, G.C. Ferdock, eds.) Nevada Bureau of Mines and Geology Special Publications. p 91–101.KeperJ.C. (2004). The Goodsprings mining district, Clark County. In: Minerals of Nevada (CastorS.B.FerdockG.C., eds.) Nevada Bureau of Mines and Geology Special Publications. p 91–101.Search in Google Scholar
Ketcham, R.A. (2015). Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. American Mineralogist 100(7), 1600–1623. https://doi.org/10.2138/am-2015-5171KetchamR.A. (2015). Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. American Mineralogist100(7), 1600–1623. https://doi.org/10.2138/am-2015-5171Search in Google Scholar
Kostov, I., & Kostov, R. (1999). Crystal habits of minerals. Prof. Marin Drinov Publishing House & Pensoft Publishers, Sofia.KostovI.KostovR. (1999). Crystal habits of minerals. Prof. Marin Drinov Publishing House & Pensoft Publishers, Sofia.Search in Google Scholar
Markl, G., Marks, M.A.W., Holzäpfel, J., & Wenzel, T. (2014). Major, minor, and trace element composition of pyromorphite-group minerals as recorder of supergene weathering processes from the Schwartzwald mining district, SW Germany. American Mineralogist 99(5-6), 1133–1146. https://doi.org/10.2138/am.2014.4789MarklG.MarksM.A.W.HolzäpfelJ.WenzelT. (2014). Major, minor, and trace element composition of pyromorphite-group minerals as recorder of supergene weathering processes from the Schwartzwald mining district, SW Germany. American Mineralogist99(5-6), 1133–1146. https://doi.org/10.2138/am.2014.4789Search in Google Scholar
Nakamoto, A., Urasima, Y., Sugura, S., Nakano, H., Yachi, T., & Tadokoro, K. (1969). Pyromorphite-mimetite minerals from the Otaru-Matsukura baryte mine in Hokkaido, Japan. Mineralogical Journal 6(1/2), 85–101.NakamotoA.UrasimaY.SuguraS.NakanoH.YachiT.TadokoroK. (1969). Pyromorphite-mimetite minerals from the Otaru-Matsukura baryte mine in Hokkaido, Japan. Mineralogical Journal6(1/2), 85–101.Search in Google Scholar
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J., & White, T.J. (2010). Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy 22(2), 163–197. https://doi.org/10.1127/0935-1221/2010/0022-2022PaseroM.KampfA.R.FerrarisC.PekovI.V.RakovanJ.WhiteT.J. (2010). Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy22(2), 163–197. https://doi.org/10.1127/0935-1221/2010/0022-2022Search in Google Scholar
Puzio, B., Solecka, U., Topolska, J., Manecki, M., & Bajda, T. (2021). Solubility and dissolution mechanisms of vanadinite Pb5(VO4)3Cl: Effects of temperature and PO4 substitutions. Applied Geochemistry 131, 105015. https://doi.org/10.1016/j.apgeochem.2021.105015PuzioB.SoleckaU.TopolskaJ.ManeckiM.BajdaT. (2021). Solubility and dissolution mechanisms of vanadinite Pb5(VO4)3Cl: Effects of temperature and PO4 substitutions. Applied Geochemistry131, 105015. https://doi.org/10.1016/j.apgeochem.2021.105015Search in Google Scholar
Sánchez-Pastor, N., Pina, C.M., Astilleros, J.M., Fernández-Díaz, L., & Putnis A. (2005). Epitaxial growth of celestite on baryte (001) face at a molecular scale. Surface Science 581, 225–235. https://doi.org/10.1016/j.susc.2005.02.051Sánchez-PastorN.PinaC.M.AstillerosJ.M.Fernández-DíazL.PutnisA. (2005). Epitaxial growth of celestite on baryte (001) face at a molecular scale. Surface Science581, 225–235. https://doi.org/10.1016/j.susc.2005.02.051Search in Google Scholar
Solecka, U., Bajda, T., Topolska, J., Zelek-Pogudz, S., & Manecki, M. (2018). Raman and Fourier transform infrared spectroscopic study of pyromorphite-vanadinite solid solutions. Spectrochimica Acta A. 190, 96–103. https://doi.org/10.1016/j.saa.2017.08.061SoleckaU.BajdaT.TopolskaJ.Zelek-PogudzS.ManeckiM. (2018). Raman and Fourier transform infrared spectroscopic study of pyromorphite-vanadinite solid solutions. Spectrochimica Acta A. 190, 96–103. https://doi.org/10.1016/j.saa.2017.08.061Search in Google Scholar
Song, H., Liu, J., & Cheng, H. (2018). Structural and spectroscopic study of arsenate and vanadate incorporation into apatite group: implications for semi-quantitative estimation of As and V contents in apatite. Spectrochimica Acta 188, 488–494. https://doi.org/10.1016/j.saa.2017.07.028SongH.LiuJ.ChengH. (2018). Structural and spectroscopic study of arsenate and vanadate incorporation into apatite group: implications for semi-quantitative estimation of As and V contents in apatite. Spectrochimica Acta188, 488–494. https://doi.org/10.1016/j.saa.2017.07.028Search in Google Scholar
Stysz, M. & Mączka, M. (2007). The Friedrich von Thielau mine in the Sowie Mts. Sudety 10. 8–9 (in Polish).StyszM.MączkaM. (2007). The Friedrich von Thielau mine in the Sowie Mts. Sudety10, 8–9 (in Polish).Search in Google Scholar
Sunagawa, I. (2007). Crystals. Growth, Morphology and Perfection. Cambridge University Press.SunagawaI. (2007). Crystals. Growth, Morphology and Perfection. Cambridge University Press.Search in Google Scholar
Szełęg, E. (2008). Vanadinite from Stanisław quarry (Izerskie Garby Zone, Sudetes, Poland). Mineralogia - Special Papers, 32.SzełęgE. (2008). Vanadinite from Stanisław quarry (Izerskie Garby Zone, Sudetes, Poland). Mineralogia-Special Papers, 32.Search in Google Scholar
Szełęg, E. (2023). Minerały i skały Polski. Multico Oficyna Wydawnicza, Warszawa.SzełęgE. (2023). Minerały i skały Polski. Multico Oficyna Wydawnicza, Warszawa.Search in Google Scholar
Traube, H. (1888). Die Minerale Schlesiens. J.U. Kern’s Verlag. Breslau.TraubeH. (1888). Die Minerale Schlesiens. J.U. Kern’s Verlag. Breslau.Search in Google Scholar