Accès libre

Towards the deep learning recognition of cultivated terraces based on Lidar data: The case of Slovenia

À propos de cet article

Citez

Abdi, A. M. (2020). Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience and Remote Sensing, 57(1), 1–20. https://doi.org/10.1080/15481603.2019.1650447Search in Google Scholar

Alavi, A. H., Gandomi, A. H., & Lary, D. J. (2016). Progress of machine learning in geosciences: Preface. Geoscience Frontiers, 7(1), 1–2. https://doi.org/10.1016/j.gsf.2015.10.006Search in Google Scholar

Alberti, A. P. (2020). Cartography of the Terraces (socalcos) in Galicia (Northwest Spain): An Original Approach. The Journal of Terraced Landscapes, 1(1), 9–33. https://doi.org/10.5281/ZENODO.5896822Search in Google Scholar

Ažman Momirski, L. (2008). Terasirana pokrajina. ZRC SAZU, Založba ZRC.Search in Google Scholar

Ažman Momirski, L. (2019). Slovenian Terraced Landscapes. In M. Varotto, L. Bonardi, & P. Tarolli (Eds.), World Terraced Landscapes: History, Environment, Quality of Life, Vol. 9 (pp. 45–62). Springer International Publishing. https://doi.org/10.1007/978-3-319-96815-5_4Search in Google Scholar

Ažman Momirski, L., & Berčič, T. (2016). Ignored Regions: Slovenian Terraced Landscapes. Annales: Annals for Istrian and Mediterranean Studies. Series Historia et Sociologia, 26(3), 399-418. https://doi.org/10.19233/ASHS.2016.37Search in Google Scholar

Ažman Momirski, L., & Berčič, T. (2018). A detailed inventory of terraced landscapes in Slovenia. In F. Alberti, A. Dal Pozzo, D. Murtas, M. A. Salas, & T. Tillmann (Eds.), Paesaggi terrazzati: Scelte per il futuro: Terzo incontro mondiale/Terraced landscapes: Choosing the future: Third world meeting (pp. 471–477). Regione del Veneto.Search in Google Scholar

Berčič, T. (2016). Discovering Terraced Areas in Slovenia: Reliable Detection with LIDAR. Annales: Annals for Istrian and Mediterranean Studies. Series Historia et Sociologia, 26(3), 449–468. https://doi.org/10.19233/ASHS.2016.35Search in Google Scholar

Berčič, T., & Ažman-Momirski, L. (2020). Parametric Terracing as Optimization of Controlled Slope Intervention. Water, 12(3), 634. https://doi.org/10.3390/w12030634Search in Google Scholar

Brown, A., Walsh, K., Fallu, D., Cucchiaro, S., & Tarolli, P. (2020). European agricultural terraces and lynchets: From archaeological theory to heritage management. World Archaeology, 52(4), 566–588. https://doi.org/10.1080/00438243.2021.1891963Search in Google Scholar

Buscombe, D., & Ritchie, A. (2018). Landscape Classification with Deep Neural Networks. Geosciences, 8(7), 244. https://doi.org/10.3390/geosciences8070244Search in Google Scholar

Camera, C., Djuma, H., Bruggeman, A., Zoumides, C., Eliades, M., Charalambous, K., … & Faka, M. (2018). Quantifying the effectiveness of mountain terraces on soil erosion protection with sediment traps and dry-stone wall laser scans. CATENA, 171, 251–264. https://doi.org/10.1016/j.catena.2018.07.017Search in Google Scholar

Cao, B., Yu, L., Naipal, V., Ciais, P., Li, W., Yuanyuan Zhao, … & Gong, P. (2020). A 30-meter terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine (Version 1) [dataset]. Zenodo. https://doi.org/10.5281/ZENODO.3895585Search in Google Scholar

Cao, B., Yu, L., Naipal, V., Ciais, P., Li, W., Zhao, Y., … & Gong, P. (2021). A 30 m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google Earth Engine. Earth System Science Data, 13(5), 2437–2456. https://doi.org/10.5194/essd-13-2437-2021Search in Google Scholar

Chandler, B. M. P., Lovell, H., Boston, C. M., Lukas, S., Barr, I. D., Benediktsson, Í. Ö., … & Stroeven, A. P. (2018). Glacial geomorphological mapping: A review of approaches and frameworks for best practice. Earth-Science Reviews, 185, 806–846. https://doi.org/10.1016/j.earscirev.2018.07.015Search in Google Scholar

Chen, D., Wei, W., & Chen, L. (2021). Effects of terracing on soil properties in three key mountainous regions of China. Geography and Sustainability, 2(3), 195–206. https://doi.org/10.1016/j.geosus.2021.08.002Search in Google Scholar

Chen, G., Li, C., Wei, W., Jing, W., Woźniak, M., Blažauskas, T., & Damaševičius, R. (2019). Fully Convolutional Neural Network with Augmented Atrous Spatial Pyramid Pool and Fully Connected Fusion Path for High Resolution Remote Sensing Image Segmentation. Applied Sciences, 9(9), 1816. https://doi.org/10.3390/app9091816Search in Google Scholar

Cicinelli, E., Caneva, G., & Savo, V. (2021). A Review on Management Strategies of the Terraced Agricultural Systems and Conservation Actions to Maintain Cultural Landscapes around the Mediterranean Area. Sustainability, 13(8), 4475. https://doi.org/10.3390/su13084475 Search in Google Scholar

Ciglič, R., Čonč, Š., & Breg Valjavec, M. (2022). The Impact of Digital Elevation Model Preprocessing and Detection Methods on Karst Depression Mapping in Densely Forested Dinaric Mountains. Remote Sensing, 14(10), 2416. https://doi.org/10.3390/rs14102416Search in Google Scholar

Ciglič, R., Hrvatin, M., Komac, B., & Perko, D. (2013). Karst as a criterion for defining areas less suitable for agriculture. Acta geographica Slovenica, 52(1), 61–98. https://doi.org/10.3986/AGS52103Search in Google Scholar

Ciglič, R., & Perko, D. (2013). Europe’s landscape hotspots. Acta geographica Slovenica, 53(1), 117–139. https://doi.org/10.3986/AGS53106Search in Google Scholar

Cosner, A., & Tecilla, G. (2020). Atlas of the terraced landscapes of Trentino: The LiDAR method of terrace identification. In J. M. Palerm Salazar (Ed.), Re-encantar bancales: Habitar en territorios de terrazas y bancales: Conclusiones del IV Congreso Mundial ITLA 2019 y Declaración de La Gomera (pp. 227–230). Gobierno de Canarias, Canarias Cultura en Red, Observatorio del Paisaje de Canarias.Search in Google Scholar

Del Val, M., Iriarte, E., Arriolabengoa, M., & Aranburu, A. (2015). An automated method to extract fluvial terraces from LIDAR based high resolution Digital Elevation Models: The Oiartzun valley, a case study in the Cantabrian Margin. Quaternary International, 364, 35–43. https://doi.org/10.1016/j.quaint.2014.10.030Search in Google Scholar

Deng, C., Zhang, G., Liu, Y., Nie, X., Li, Z., Liu, J., & Zhu, D. (2021). Advantages and disadvantages of terracing: A comprehensive review. International Soil and Water Conservation Research, 9(3), 344–359. https://doi.org/10.1016/j.iswcr.2021.03.002Search in Google Scholar

Dettori, J. R., & Norvell, D. C. (2020). Kappa and Beyond: Is There Agreement? Global Spine Journal, 10(4), 499–501. https://doi.org/10.1177/2192568220911648Search in Google Scholar

Diaz-Varela, R. A., Zarco-Tejada, P. J., Angileri, V., & Loudjani, P. (2014). Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle. Journal of Environmental Management, 134, 117–126. https://doi.org/10.1016/j.jenvman.2014.01.006Search in Google Scholar

Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3), 297–302. https://doi.org/10.2307/1932409Search in Google Scholar

Djuma, H., Bruggeman, A., Zissimos, A., Christoforou, I., Eliades, M., & Zoumides, C. (2020). The effect of agricultural abandonment and mountain terrace degradation on soil organic carbon in a Mediterranean landscape. CATENA, 195, 104741. https://doi.org/10.1016/j.catena.2020.104741Search in Google Scholar

Drobnjak, V. (1989). Fizičnogeografski pomen kulturnih teras. In M. Orožen Adamič (Ed.), Primorje, zbornik 15. Zborovanja slovenskih geografov (pp. 139–142). Zveza geografskih društev Slovenije.Search in Google Scholar

Ferk, M. (2016). Paleopoplave v porečju kraške Ljubljanice. ZRC SAZU, Založba ZRC. https://doi.org/10.3986/9789612548452Search in Google Scholar

Ferrarese, F., Pappalardo, S. E., Cosner, A., Brugnaro, S., Alum, K., Dal Pozzo, A., & De Marchi, M. (2019). Mapping Agricultural Terraces in Italy. Methodologies Applied in the MAPTER Project. In M. Varotto, L. Bonardi, & P. Tarolli (Eds.), World Terraced Landscapes: History, Environment, Quality of Life, Vol. 9 (pp. 179–194). Springer International Publishing. https://doi.org/10.1007/978-3-319-96815-5_11Search in Google Scholar

Ferro-Vázquez, C., Lang, C., Kaal, J., & Stump, D. (2017). When is a terrace not a terrace? The importance of understanding landscape evolution in studies of terraced agriculture. Journal of Environmental Management, 202, 500–513. https://doi.org/10.1016/j.jenvman.2017.01.036Search in Google Scholar

Fisher, J. R. B., Acosta, E. A., Dennedy-Frank, P. J., Kroeger, T., & Boucher, T. M. (2018). Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sensing in Ecology and Conservation, 4(2), 137–149. https://doi.org/10.1002/rse2.61Search in Google Scholar

Gabrovec, M., & Kumer, P. (2019). Land-use changes in Slovenia from the Franciscean Cadaster until today. Acta geographica Slovenica, 59(1), 63–81. https://doi.org/10.3986/AGS.4892Search in Google Scholar

Gardner, D., Penprase, S. B., Larson, P., Wickert, A. D., & Clubb, F. J. (2020). Review and assessment of remote mapping methods of fluvial terraces: Whitewater River, Minnesota. AGU Fall Meeting Abstracts. https://ui.adsabs.harvard.edu/abs/2020AGUFMEP0030016G/abstract Search in Google Scholar

Gašperič, P. (2023). A new standardized methodology for analyzing cartographic information on old maps. Acta geographica Slovenica, 63(2), 23–49. https://doi.org/10.3986/AGS.10867Search in Google Scholar

Glušič, A., Ciglič, R., & Čehovin Zajc, L. (2021). Zaznavanje terasiranih pokrajin kot semantična segmentacija digitalnega modela višin. In A. Žemva, & A. Trost (Eds.), Zbornik Tridesete Mednarodne Elektrotehniške in Računalniške Konference ERK 2021 (pp. 378–381). Slovenska sekcija IEEE : Fakulteta za elektrotehniko.Search in Google Scholar

Godone, D., Giordan, D., & Baldo, M. (2018). Rapid mapping application of vegetated terraces based on high resolution airborne LiDAR. Geomatics, Natural Hazards and Risk, 9(1), 970–985. https://doi.org/10.1080/19475705.2018.1478893Search in Google Scholar

Grlj, A., & Grigillo, D. (2014). Uporaba digitalnega modela višin in satelitskega posnetka RapidEye za zaznavanje kraških kotanj in brezstropih jam Podgorskega krasa. Dela, 42, 129–147. https://doi.org/10.4312/dela.42.129-147Search in Google Scholar

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778). https://doi.org/10.1109/CVPR.2016.90Search in Google Scholar

Hicks, S. A., Strümke, I., Thambawita, V., Hammou, M., Riegler, M. A., Halvorsen, P., & Parasa, S. (2022). On evaluation metrics for medical applications of artificial intelligence. Scientific Reports, 12(1), 5979. https://doi.org/10.1038/s41598-022-09954-8Search in Google Scholar

Jaccard, P. (1912). The distribution of the flora in the Alpine zone. New Phytologist, 11(2), 37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.xSearch in Google Scholar

Jinwen, L., & Yuanyan, P. (2012). First Terraced Landscapes Conference (Hong • China) Paper Collection. Zenodo. https://doi.org/10.5281/ZENODO.5938220Search in Google Scholar

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. Arxiv. https://doi.org/10.48550/ARXIV.1412.6980Search in Google Scholar

Kladnik, D., Lovrenčak, D., & Orožen Adamič, M. (Eds.) (2005). Geografski terminološki slovar. ZRC SAZU, Založba ZRC.Search in Google Scholar

Kladnik, D., Ciglič, R., Geršič, M., Komac, B., Perko, D., & Zorn, M. (2016a). Diversity of Terraced Landscapes in Slovenia. Annales: Annals for Istrian and Mediterranean Studies. Series Historia et Sociologia, 26(3), 469–486. https://doi.org/10.19233/ASHS.2016.38Search in Google Scholar

Kladnik, D., Perko, D., Ciglič, R., & Geršič, M. (Eds.). (2016b). Terasirane pokrajine. ZRC SAZU, Založba ZRC. https://doi.org/10.3986/9789612548896Search in Google Scholar

Kladnik, D., Perko, D., Ciglič, R., & Geršič, M. (Eds.). (2017a). Terraced Landscapes. ZRC SAZU, Založba ZRC. https://doi.org/10.3986/9789610500193Search in Google Scholar

Kladnik, D., Šmid Hribar, M., & Geršič, M. (2017b). Terraced landscapes as protected cultural heritage sites. Acta geographica Slovenica, 57(2), 131–148. https://doi.org/10.3986/AGS.4628Search in Google Scholar

Kuroda, Y. (2020). The Current Situation and Efforts to Conserve Rice Terraces in Japan. The Journal of Terraced Landscapes, 1(1), 73–85. https://doi.org/10.5281/ZENODO.5833613Search in Google Scholar

Lu, Y., Li, X., Xin, L., Song, H., & Wang, X. (2023). Mapping the terraces on the Loess Plateau based on a deep learning-based model at 1.89 m resolution. Scientific Data, 10(1), 115. https://doi.org/10.1038/s41597-023-02005-5Search in Google Scholar

Maxwell, A. E., Odom, W. E., Shobe, C. M., Doctor, D. H., Bester, M. S., & Ore, T. (2023). Exploring the Influence of Input Feature Space on CNN-Based Geomorphic Feature Extraction From Digital Terrain Data. Earth and Space Science, 10(5), e2023EA002845, https://doi.org/10.1029/2023EA002845Search in Google Scholar

Mihevc, A., & Mihevc, R. (2021). Morphological characteristics and distribution of dolines in Slovenia, a study of a lidar-based doline map of Slovenia. Acta Carsologica, 50(1), 11–36. https://doi.org/10.3986/ac.v50i1.9462Search in Google Scholar

Mohamed, I. N. L., & Verstraeten, G. (2012). Analyzing dune dynamics at the dune-field scale based on multi-temporal analysis of Landsat-TM images. Remote Sensing of Environment, 119, 105–117. https://doi.org/10.1016/j.rse.2011.12.010Search in Google Scholar

Moreno-de-las-Heras, M., Lindenberger, F., Latron, J., Lana-Renault, N., Llorens, P., & Gallart, F. (2019). Hydro-geomorphological consequences of the abandonment of agricultural terraces in the Mediterranean region: Key controlling factors and landscape stability patterns. Geomorphology, 333, 73–91. https://doi.org/10.1016/j.geomorph.2019.02.014Search in Google Scholar

Ninfo, A. (2008). An assessment of the threat to the terraced areas along the Brenta Canal: An approach based on LIDAR. In E. Fontanari & D. Patassini (Eds.), Terraced landscapes of the Alps: Projects in progress (pp 28-33).Search in Google Scholar

Norini, G., Zuluaga, M. C., Ortiz, I. J., Aquino, D. T., & Lagmay, A. M. F. (2016). Delineation of alluvial fans from Digital Elevation Models with a GIS algorithm for the geomorphological mapping of the Earth and Mars. Geomorphology, 273, 134–149. https://doi.org/10.1016/j.geomorph.2016.08.010Search in Google Scholar

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., … & Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. Arxiv. https://doi.org/10.48550/arXiv.1912.01703Search in Google Scholar

Patel, A. K., & Chatterjee, S. (2016). Computer vision-based limestone rock-type classification using probabilistic neural network. Geoscience Frontiers, 7(1), 53–60. https://doi.org/10.1016/j.gsf.2014.10.005Search in Google Scholar

Perko, D., Ciglič, R., & Hrvatin, M. (2021). Landscape macrotypologies and microtypologies of Slovenia. Acta geographica Slovenica, 61(3), 7–89. https://doi.org/10.3986/AGS.10384Search in Google Scholar

Perko, D., Ciglič, R., & Zorn, M. (2020). Slovenia: A European Landscape Hotspot. In D. Perko, R. Ciglič, & M. Zorn (Eds.), The Geography of Slovenia (pp. 1–20). Springer International Publishing. https://doi.org/10.1007/978-3-030-14066-3_1Search in Google Scholar

Pijl, A., Quarella, E., Vogel, T. A., D’Agostino, V., & Tarolli, P. (2021). Remote sensing vs. Field-based monitoring of agricultural terrace degradation. International Soil and Water Conservation Research, 9(1), 1–10. https://doi.org/10.1016/j.iswcr.2020.09.001Search in Google Scholar

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 779–788). https://doi.org/10.1109/CVPR.2016.91Search in Google Scholar

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in Neural Information Processing Systems (pp. 1–9). Curran Associates, Inc.Search in Google Scholar

Romero-Martín, L. E., Marrero-Rodríguez, N., García-Romero, L., Santana-Santana, S., Pérez-Chacón Espino, E., & Fernández-Cabrera, E. (2020). Characterizing the Terraced Landscapes of the Island of Gran Canaria (Canary Islands, Spain). The Journal of Terraced Landscapes, 1(1), 134–161. https://doi.org/10.5281/ZENODO.5819587Search in Google Scholar

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Arxiv. https://doi.org/10.48550/ARXIV.1505.04597Search in Google Scholar

Sakellariou, M., Psiloglou, B. E., Giannakopoulos, C., & Mylona, P. V. (2021). Integration of Abandoned Lands in Sustainable Agriculture: The Case of Terraced Landscape Re-Cultivation in Mediterranean Island Conditions. Land, 10(5), 457. https://doi.org/10.3390/land10050457 Search in Google Scholar

Sarker, I. H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science, 2(6), 420. https://doi.org/10.1007/s42979-021-00815-1Search in Google Scholar

Scaramellini, G., & Varotto, M. (Eds.). (2008). Terraced landscapes of the Alps: Atlas. Alpter project.Search in Google Scholar

Scott, A. T., & Pinter, N. (2003). Extraction of Coastal Terraces andSearch in Google Scholar

Shoreline-Angle Elevations from Digital Terrain Models, Santa Cruz and Anacapa Islands, California. Physical Geography, 24(4), 271–294. https://doi.org/10.2747/0272-3646.24.4.271Search in Google Scholar

Slámová, M., Jakubec, B., Hreško, J., Beláček, B., & Gallay, L. (2015). Modification of the potential production capabilities of agricultural terrace soils due to historical cultivation in the Budina cadastral area, Slovakia. Moravian Geographical Reports, 23(2), 47–55. https://doi.org/10.1515/mgr-2015-0010Search in Google Scholar

Slámová, M., Krčmářová, J., Hronček, P., & Kaštierová, M. (2017). Environmental factors influencing the distribution of agricultural terraces: Case study of Horný Tisovník, Slovakia. Moravian Geographical Reports, 25(1), 34–45. https://doi.org/10.1515/mgr-2017-0004Search in Google Scholar

Šmid Hribar, M., Geršič, M., Pipan, P., Repolusk, P., Tiran, J., Topole, M., & Ciglič, R. (2017). Cultivated terraces in Slovenian landscapes. Acta geographica Slovenica, 57(2), 83–97. https://doi.org/10.3986/AGS.4597Search in Google Scholar

Stralla, A. G., Cibrario, M., Salmona, P., Marin, V., & Brancucci, G. (2018). A GIS based expeditious approach for the localization and mapping of terraces. The Ligurian case. In F. Alberti, A. Dal Pozzo, D. Murtas, M. A. Salas, & T. Tillmann (Eds.), Paesaggi terrazzati: Scelte per il futuro: Terzo incontro mondiale/Terraced landscapes: Choosing the future: Third world meeting (pp. 365–372). Regione del Veneto. Search in Google Scholar

Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021). Cellpose: A generalist algorithm for cellular segmentation. Nature Methods, 18(1), 100–106. https://doi.org/10.1038/s41592-020-01018-xSearch in Google Scholar

Sun, W., Zhang, Y., Mu, X., Li, J., Gao, P., Zhao, G., … & Chiew, F. (2019). Identifying terraces in the hilly and gully regions of the Loess Plateau in China. Land Degradation and Development, 30(17), 2126–2138. https://doi.org/10.1002/ldr.3405Search in Google Scholar

Tarolli, P., Rizzo, D., & Brancucci, G. (2019). Terraced Landscapes: Land Abandonment, Soil Degradation, and Suitable Management. In M. Varotto, L. Bonardi, & P. Tarolli (Eds.), World Terraced Landscapes: History, Environment, Quality of Life, Vol. 9 (pp. 195–210). Springer International Publishing. https://doi.org/10.1007/978-3-319-96815-5_12Search in Google Scholar

Tang; T., & Painho, M. (2023). Content-location relationships: a framework to explore correlations between space-based and place-based user-generated content. International Journal of Geographical Information Science, 37(8), 1840–1871. https://doi.org/10.1080/13658816.2023.2213869Search in Google Scholar

Terkenli, T. S., Castiglioni, B., & Cisani, M. (2019). The Challenge of Tourism in Terraced Landscapes. In M. Varotto, L. Bonardi, & P. Tarolli (Eds.), World Terraced Landscapes: History, Environment, Quality of Life, Vol. 9 (pp. 295–309). Springer International Publishing. https://doi.org/10.1007/978-3-319-96815-5_18Search in Google Scholar

Tillmann, T., Novo, J., & Epiquién, M. (2020). Inventories of Terraced Landscapes in Peru. The Journal of Terraced Landscapes, 1(1), 34–71. https://doi.org/10.5281/ZENODO.5215341Search in Google Scholar

Titl, J. (1965). Socialnogeografski problemi na koprskem podeželju. Založba lipa.Search in Google Scholar

Triglav Čekada, M., & Bric, V. (2015). Končan je projekt laserskega skeniranja Slovenije. Geodetski Vestnik, 59(3), 586–592.Search in Google Scholar

Van Coillie, F. M. B., Gardin, S., Anseel, F., Duyck, W., Verbeke, L. P. C. & De Wulf, R. R. (2014). Variability of operator performance in remote-sensing image interpretation: the importance of human and external factors, International Journal of Remote Sensing, 35(2), 754–778. https://doi.org/10.1080/01431161.2013.873152Search in Google Scholar

Varotto, M., Bonardi, L., & Tarolli, P. (2019). Introduction. In M. Varotto, L. Bonardi, & P. Tarolli (Eds.), World Terraced Landscapes: History, Environment, Quality of Life, Vol. 9 (pp. 1–4). Springer International Publishing. https://doi.org/10.1007/978-3-319-96815-5_1Search in Google Scholar

Verbovšek, T., Popit, T., & Kokalj, Ž. (2019). VAT Method for Visualization of Mass Movement Features: An Alternative to Hillshaded DEM. Remote Sensing, 11(24), 2946. https://doi.org/10.3390/rs11242946Search in Google Scholar

Yuan, Y., Shi, J., & Gu, L. (2021). A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Systems with Applications, 169(114417), 1–14. https://doi.org/10.1016/j.eswa.2020.114417Search in Google Scholar

Wei, Z., He, H., Hao, H., & Gao, W. (2017). Automated mapping of landforms through the application of supervised classification to lidAR-derived DEMs and the identification of earthquake ruptures. International Journal of Remote Sensing, 38(23), 7196–7219. https://doi.org/10.1080/01431161.2017.1372861Search in Google Scholar

Wurm, M., Stark, T., Zhu, X. X., Weigand, M., & Taubenböck, H. (2019). Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 59–69. https://doi.org/10.1016/j.isprsjprs.2019.02.006Search in Google Scholar

Zhang, Y., Shi, M., Zhao, X., Wang, X., Luo, Z., & Zhao, Y. (2017). Methods for automatic identification and extraction of terraces from high spatial resolution satellite data (China-GF-1). International Soil and Water Conservation Research, 5(1), 17–25. https://doi.org/10.1016/j.iswcr.2017.02.002Search in Google Scholar

Zhao, F., Xiong, L., Wang, C., Wang, H., Wei, H., & Tang, G. (2021). Terraces mapping by using deep learning approach from remote sensing images and digital elevation models. Transactions in GIS, 25(5), 2438–2454. https://doi.org/10.1111/tgis.12824Search in Google Scholar

Zorn, M., Ferk, M., Lipar, M., Komac, B., Tičar, J., & Hrvatin, M. (2020). Landforms of Slovenia. In D. Perko, R. Ciglič, & M. Zorn (Eds.), The Geography of Slovenia (pp. 35–57). Springer International Publishing. https://doi.org/10.1007/978-3-030-14066-3_3Search in Google Scholar

Zoumides, C., Bruggeman, A., Giannakis, E., Camera, C., Djuma, H., Eliades, M., & Charalambous, K. (2017). Community-Based Rehabilitation of Mountain Terraces in Cyprus. Land Degradation and Development, 28(1), 95–105. https://doi.org/10.1002/ldr.2586Search in Google Scholar

eISSN:
2199-6202
Langue:
Anglais