This work is licensed under the Creative Commons Attribution 4.0 International License.
Solarczyk, P., Majewska, A.C. (2010). A survey of the prevalence and genotypes of Giardia duodenalis infecting household and sheltered dogs. Parasitol Res. 106(5): 1015-1019. https://doi.org/10.1007/s00436-010-1766-5 PMid:20155370Search in Google Scholar
Boucard, A.S., Thomas, M., Lebon, W., Polack, B., Florent, I., Langella, P., Bermudez-Humaran, L.G. (2021). Age and Giardia intestinalis infection impact canine gut microbiota. Microorganisms. 9(9): 1862. https://doi.org/10.3390/microorganisms9091862 PMid:34576757 PMCid:PMC8469385Search in Google Scholar
Einarsson, E., Ma’ayeh, S., Svard, S.G. (2016). An update on Giardia and giardiasis. Curr Opin Microbiol. 34, 47-52. https://doi.org/10.1016/j.mib.2016.07.019 PMid:27501461Search in Google Scholar
Ballweber, L.R., Xiao, L.H., Bowman, D.D., Kahn, G., Cama, V.A. (2010). Giardiasis in dogs and cats: update on epidemiology and public health significance. Trends Parasitol. 26(4): 180-189. https://doi.org/10.1016/j.pt.2010.02.005 PMid:20202906Search in Google Scholar
Ortega-Pierres, M.G., Jex, A.R., Ansell, B.R.E., Svard, S.G. (2018). Recent advances in the genomic and molecular biology of Giardia. Acta Trop. 184, 67-72. https://doi.org/10.1016/j.actatropica.2017.09.004 PMid:28888474Search in Google Scholar
Adam, R.D. (2021). Giardia duodenalis: biology and pathogenesis. Clin Microbiol Rev. 34(4): e00024-19. https://doi.org/10.1128/CMR.00024-19 PMid:34378955 PMCid:PMC8404698Search in Google Scholar
Cotton, J.A., Beatty, J.K., Buret, A.G. (2011). Host-parasite interactions and pathophysiology in Giardia infections. Int J Parasitol. 41(9): 925-933. https://doi.org/10.1016/j.ijpara.2011.05.002 PMid:21683702Search in Google Scholar
Dixon, B.R. (2021). Giardia duodenalis in humans and animals - Transmission and disease. Res Vet Sci. 135, 283-289. https://doi.org/10.1016/j.rvsc.2020.09.034 PMid:33066992Search in Google Scholar
Thompson, R.C.A., Palmer, C.S., O’Handley, R. (2008). The public health and clinical significance of Giardia and Cryptosporidium in domestic animals. Vet J. 177(1): 18-25. https://doi.org/10.1016/j.tvjl.2007.09.022 PMid:18032076 PMCid:PMC7128580Search in Google Scholar
Yildiz, I.K., Ok, M. (2022). Investigation of biomarkers indicating intestinal damage in Isospora-infected dogs. Hungar Vet J. 144(2): 101-113. [In Hungarian]Search in Google Scholar
Yildiz, R., Ok, M., Ider, M., Akar, A., Naseri, A., Koral, E. (2019). The changes in biomarkers for necrotising enterocolitis in premature calves with respiratory distress syndrome. Vet Med. 64(10): 440-447. https://doi.org/10.17221/37/2019-VETMEDSearch in Google Scholar
Yildiz, R., Ok, M., Ider, M., Aydin, U., Naseri, A., Parlak, K., Gulersoy, E. (2018). Evaluation of intestinal damage biomarkers in calves with atresia coli. J Vet Res. 62(3): 379-384. https://doi.org/10.2478/jvetres-2018-0054 PMid:30584620 PMCid:PMC6295999Search in Google Scholar
Gulersoy, E., Ok, M., Yildiz, R., Koral, E., Ider, M., Sevinc, M., Zhunushova, A. (2020). Assessment of intestinal and cardiac-related biomarkers in dogs with parvoviral enteritis. Pol J Vet Sci. 23(2): 211-219. https://doi.org/10.24425/pjvs.2020.133635 PMid:32627989Search in Google Scholar
Ok, M., Yildiz, R., Hatipoglu, F., Baspinar, N., Ider, M., Uney, K., Erturk, A., Durgut, M.K., Terzi, F. (2020). Use of intestine-related biomarkers for detecting intestinal epithelial damage in neonatal calves with diarrhea. Am J Vet Res. 81(2): 139-146. https://doi.org/10.2460/ajvr.81.2.139 PMid:31985285Search in Google Scholar
Durgut, M.K., Ok, M. (2023). Evaluation of some intestinal biomarkers in the deter mination of intestinal damage in calves with coccidiosis. Trop Anim Sci J. 46(2): 221-230. https://doi.org/10.5398/tasj.2023.46.2.221Search in Google Scholar
Ekici, Y.E., Ok, M. (2024). Investigation of the relationship between atopic dermatitis of dogs and intestinal epithelial damage. Vet Med Sci. 10(3): e1453. https://doi.org/10.1002/vms3.1453 PMid:38648253 PMCid:PMC11034634Search in Google Scholar
Foreyt, W.J. (2013). Veterinary parasitology reference manual. John Wiley & SonsSearch in Google Scholar
Coe, N.R., Bernlohr, D.A. (1998). Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim Biophys Acta. 1391(3): 287-306. https://doi.org/10.1016/S0005-2760(97)00205-1Search in Google Scholar
Guzman-Guzman, I.P., Nogueda-Tor res, B., Zaragoza-Garcia, O., Navarro-Zarza, J.E., Briceno, O., Perez-Rubio, G., Falfan-Valencia, R., et al. (2022). The infection, coinfection, and abundance of intestinal protozoa increase the serum levels of IFABP2 and TNF-α in patients with rheumatoid arthritis. Front Med. 9, 846934. https://doi.org/10.3389/fmed.2022.846934 PMid:35492365 PMCid:PMC9039364Search in Google Scholar
Ludwig, E.K., Hobbs, K.J., McKinney-Aguirre, C.A., Gonzalez, L.M. (2023). Biomarkers of intestinal injury in colic. Animals (Basel). 13(2): 227. https://doi.org/10.3390/ani13020227 PMid:36670767 PMCid:PMC9854801Search in Google Scholar
Sarikaya, M., Ergul, B., Dogan, Z., Filik, L., Can, M., Arslan, L. (2015). Intestinal fatty acid binding protein (I-FABP) as a promising test for Crohn’s disease: A preliminary study. Clin Lab. 61(1-2): 87-91. https://doi.org/10.7754/Clin.Lab.2014.140518 PMid:25807642Search in Google Scholar
Oldenburger, I.B., Wolters, V.M., Kardol-Hoefnagel, T., Houwen, R.H.J., Otten, H.G. (2018). Serum intestinal fatty acid-binding protein in the noninvasive diagnosis of celiac disease. APMIS 126(3): 186-190. https://doi.org/10.1111/apm.12800 PMid:29383769Search in Google Scholar
Cascais-Figueiredo, T., Austriaco-Teixeira, P., Fantinatti, M., Silva-Freitas, M.L., Santos-Oliveira, J.R., Coelho, C.H., Singer, S.M., Da-Cruz, A.M. (2020). Giardiasis alters intestinal fatty acid binding protein (I-FABP) and plasma cytokine levels in children in Brazil. Pathogens. 9(1): 7. https://doi.org/10.3390/pathogens9010007 PMid:31861618 PMCid:PMC7169386Search in Google Scholar
Straarup, D., Gotschalck, K.A., Christensen, P.A., Krarup, H., Lundbye-Christensen, S., Handberg, A., Thorlacius-Ussing, O. (2023). Exploring I-FABP, endothelin-1 and L-lactate as biomarkers of acute intestinal necrosis: a case-control study. Scand J Gastroenterol. 58(12): 1359-1365. https://doi.org/10.1080/00365521.2023.2229930 PMid:37403410Search in Google Scholar
Ay, C.D., Tuna, G.E., Asici, G.S.E., Ulutas, B., Voyvoda, H. (2022). Serum intestinal fatty acid-binding protein and calprotectin concentrations to assess clinical severity and prognosis of canine parvovirus enteritis. Kafkas Univ Vet Fak Derg. 28(1): 105-114.Search in Google Scholar
Goldberg, R.F., Austen, W.G., Zhang, X.B., Munene, G., Mostafa, G., Biswas, S., McCormack, M., et al. (2008). Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci U.S.A. 105(9): 3551-3556. https://doi.org/10.1073/pnas.0712140105 PMid:18292227 PMCid:PMC2265168Search in Google Scholar
Kuhn, F., Adiliaghdam, F., Cavallaro, P.M., Hamarneh, S.R., Tsurumi, A., Hoda, R.S., Munoz, A.R., et al. (2020). Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight. 5(6): 134049. https://doi.org/10.1172/jci.insight.134049 PMid:32213701 PMCid:PMC7213802Search in Google Scholar
Martins, R.D.S., Kooi, E.M.W., Poelstra, K., Hulscher, J.B.F. (2023). The role of intestinal alkaline phosphatase in the development of necrotizing enterocolitis. Early Hum Dev. 183, 105797. https://doi.org/10.1016/j.earlhumdev.2023.105797 PMid:37300991Search in Google Scholar
Rentea, R.M., Liedel, J.L., Fredrich, K., Pritchard, K.T. Jr., Oldham, K.T., Simpson, P.M., Gourlay, D.M. (2013). Enteral intestinal alkaline phosphatase administration in newbor ns decreases iNOS expression in a neonatal necrotizing enterocolitis rat model. J Pediatr Surg. 48(1): 124-128. https://doi.org/10.1016/j.jpedsurg.2012.10.026 PMid:23331804 PMCid:PMC5664149Search in Google Scholar
Biesterveld, B.E., Koehler, S.M., Heinzerling, N.P., Rentea, R.M., Fredrich, K., Welak, S.R., Gourlay, D.M. (2015). Intestinal alkaline phosphatase to treat necrotizing enterocolitis. J Surg Res. 196(2): 235-240. https://doi.org/10.1016/j.jss.2015.02.030 PMid:25840489 PMCid:PMC4578817Search in Google Scholar
Molnar, K., Vannay, A., Szebeni, B., Banki, N.F., Sziksz, E., Cseh, A., Gyorffy, H., et al. (2012). Intestinal alkaline phosphatase in the colonic mucosa of children with inf lammatory bowel disease. World J Gastroenterol. 18(25): 3254-3259.Search in Google Scholar
Park, S.Y., Kim, J.Y., Lee, S.M., Chung, J.O., Seo, J.H., Kim, S., Kim, D.H., et al. (2018). Lower expression of endogenous intestinal alkaline phosphatase may predict worse prognosis in patients with Crohn’s disease. BMC Gastroenterol. 18(1): 188. https://doi.org/10.1186/s12876-018-0904-x PMid:30558547 PMCid:PMC6296121Search in Google Scholar
Thim, L. (1994). Trefoil peptides: a new family of gastrointestinal molecules. Digestion. 55(6): 353-360. https://doi.org/10.1159/000201165 PMid:7705547Search in Google Scholar
Ng, E.W.Y., Poon, T.C.W., Lam, H.S., Cheung, H.M., Ma, T.P.Y., Chan, K.Y.Y., Wong, R.P.O., et al. (2013). Gut-associated biomarkers L-FABP, I-FABP, and TFF3 and LIT score for diagnosis of surgical necrotizing enterocolitis in preterm infants. Ann Surg. 258(6): 1111-1118. https://doi.org/10.1097/SLA.0b013e318288ea96 PMid:23470582Search in Google Scholar
Srivastava, S., Kedia, S., Kumar, S., Mouli, V.P., Dhingra, R., Sachdev, V., Tiwari, V., et al. (2015). Serum human trefoil factor 3 is a biomarker for mucosal healing in ulcerative colitis patients with minimal disease activity. J Crohns Colitis. 9(7): 575-579. https://doi.org/10.1093/ecco-jcc/jjv075 PMid:25964429Search in Google Scholar