Accès libre

Evaluation of the Corrected QT Interval with Bazett’s Method in Cavalier King Charles Spaniel Dogs with Myxomatous Mitral Valve Disease

À propos de cet article

Citez

Parker, H.G., Kilroy-Glynn, P. (2012). Myxomatous mitral valve disease in dogs: does size matter? J Vet Cardiol. 14(1): 19-29. https://doi.org/10.1016/j.jvc.2012.01.006 PMid:22356836 PMCid:PMC3307894330789422356836 Search in Google Scholar

Madsen, M.B., Olsen, L.H., Häggström, J., Höglund, K., Ljungvall, I., Falk, T., Wess, G., et al. (2011). Identification of 2 loci associated with development of myxomatous mitral valve disease in Cavalier King Charles Spaniels. J Hered. 102(Suppl 1): S62-S67. https://doi.org/10.1093/jhered/esr041 PMid:2184674821846748 Search in Google Scholar

Markby, G.R., Macrae, V.E., Corcoran, B.M., Summers, K.M. (2020). Comparative transcriptomic profiling of myxomatous mitral valve disease in the cavalier King Charles spaniel. BMC Vet Res. 16(1): 350. https://doi.org/10.1186/s12917-020-02542-w PMid:32967675 PMCid:PMC7509937750993732967675 Search in Google Scholar

Lewis, T., Swift, S., Woolliams, J.A., Blotta, S. (2011). Heritability of premature mitral valve disease in Cavalier King Charles spaniels. Vet J. 188(1): 73-76. https://doi.org/10.1016/j.tvjl.2010.02.016 PMid:2034735820347358 Search in Google Scholar

Beardow, A.W., Buchanan, J.W. (1993). Chronic mitral valve disease in cavalier King Charles spaniels: 95 cases (1987-1991). J Am Vet Med Assoc. 203(7): 1023-1029. Search in Google Scholar

Summers, J.F., O’Neill, D.G., Church, D.B., Thomson, P.C., McGreevy, P.D., Brodbelt, D.C. (2015). Prevalence of disorders recorded in Cavalier King Charles Spaniels attending primary-care veterinary practices in England. Canine Genet Epidemiol. 2, 4. https://doi.org/10.1186/s40575-015-0016-7 PMid:26401332 PMCid:PMC4579365457936526401332 Search in Google Scholar

Ljungvall, I., Ahlstrom, C., Höglund, K., Hult, P., Kvart, C., Borgarelli, M., Ask, P., Häggström, J. (2009). Use of signal analysis of heart sounds and murmurs to assess severity of mitral valve regurgitation attributable to myxomatous mitral valve disease in dogs. Am J Vet Res. 70(5): 604-613. https://doi.org/10.2460/ajvr.70.5.604 PMid:1940589919405899 Search in Google Scholar

Pomerance, A., Whitney, J.C. (1970). Heart valve changes common to man and dog: a comparative study. Cardiovasc Res. 4(1): 61-66. https://doi.org/10.1093/cvr/4.1.61 PMid:54168445416844 Search in Google Scholar

Edwards, N.J. (1987). Balton’s handbook of canine and feline electrocardoigraphy (2nd ed.). Philadelphia: W.B. Saunders Co Search in Google Scholar

Barr, C.S., Nass, A., Freeman, M., Lang, C.C., Struthers, A.D. (1994). QT dispersion and sudden unexpected death in chronic heart failure. Lancet. 343(8893): 327-329. https://doi.org/10.1016/S0140-6736(94)91164-9 PMid:79051467905146 Search in Google Scholar

Viskin, S. (2009). The QT interval: too long, too short or just right. Heart Rhythm. 6(5): 711-715. https://doi.org/10.1016/j.hrthm.2009.02.044 PMid:1938965619389656 Search in Google Scholar

Gonul, R., Koenhemsi, L., Yildiz, K., Or, M.E. (2019). Determination of corrected QT interval in Kangal breed dogs. Pak Vet J. 39(1): 86-90. https://doi.org/10.29261/pakvetj/2018.115 Search in Google Scholar

Oliveira, M.S., Muzzi, R.A.L., Muzzi, L.A.L., Cherem, M., Mantovani, M.M. (2014). QT interval in healthy dogs: which method of correcting the QT interval in dogs is appropriate for use in small animal clinics? Animal Morphophysiology. Pesq Vet Bras. 34(5): 469-472. https://doi.org/10.1590/S0100-736X2014000500014 Search in Google Scholar

Phan, D.Q., Silka, M.J., Yueh-Tze, L., Lan, Y.T., Chang, R.K. (2015). Comparison of formulas for calculation of the corrected QT interval in infants and young children. J Pediatr. 166(4): 960-964. https://doi.org/10.1016/j.jpeds.2014.12.037 PMid:25648293 PMCid:PMC4380641438064125648293 Search in Google Scholar

Cobos Gil, M.A. (2013). A new, simpler and better correction formula for the QT interval. J Am Coll Cardiol. 61(10): E294. https://doi.org/10.1016/S0735-1097(13)60294-6 Search in Google Scholar

Molnara, J., Weiss, J., Zhang, F., Rosenthal, J.E. (1996). Evaluation of five QT correction formulas using a software-assisted method of continuous QT measurement from 24-hour Holter recordings. Am J Card. 78(8): 920-926. https://doi.org/10.1016/S0002-9149(96)00468-7 PMid:88886668888666 Search in Google Scholar

Bazett, H.C. (1920). An analysis of the time-relations of electrocardiograms. Heart 7, 353-370. Search in Google Scholar

Buchanan, J.W. (2000). Vertebral scale system to measure heart size in radiographs. Vet Clin North Am Small Anim Pract. 30(2): 379-393. https://doi.org/10.1016/S0195-5616(00)50027-8 Search in Google Scholar

Keene, B.W., Atkins, C.E., Bonagura, J.D., Fox, P.R., Häggström, J., Fuentes, V.L., Oyama, M.A., et al. (2019). ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. J Vet Intern Med. 33(3): 1127-1140. https://doi.org/10.1111/jvim.15488 PMid:30974015 PMCid:PMC6524084652408430974015 Search in Google Scholar

Häggström, J., Hansson, K., Kvart, C., Swenson, L. (1992). Chronic valvular disease in the cavalier King Charles spaniel in Sweden. Vet Rec. 131(24): 549-553. Search in Google Scholar

Birkegard, A.C., Reimann, M.J., Martinussen, T., Häggström, J., Pedersen, H.D., Olsen, L.H. (2016). Breeding restrictions decrease the prevalence of myxomatous mitral valve disease in Cavalier King Charles Spaniels over an 8- to 10-year period. J Vet Intern Med. 30(1): 63-68. https://doi.org/10.1111/jvim.13663 PMid:26578464 PMCid:PMC4913653491365326578464 Search in Google Scholar

Borgarelli, M., Haggström, J. (2010). Canine degenerative myxomatous mitral valve disase: natural history, clinical presentation and therapy. Vet Clin Small Anim Pract. 40(4): 651-663. https://doi.org/10.1016/j.cvsm.2010.03.008 PMid:2061001720610017 Search in Google Scholar

Cho, E.J., Han, K., Lee, S.P., Shin, D.W., Yu, S.J. (2020). Liver enzyme variability and risk of heart disease and mortality: a nationwide population-based study. Liver Int. 40(6): 1292-1302. https://doi.org/10.1111/liv.14432 PMid:3215309632153096 Search in Google Scholar

Nicholle, A.P., Chetboul, V., Allerheiligen, T., Pouchelon, J.L., Gouni, V., Tessier Vetzel, D., Lefebvre, H.P. (2007). Azotemia and glomerular filtration rate in dogs with chronic valvular disease. J Vet Intern Med. 21(5): 943-949. https://doi.org/10.1111/j.1939-1676.2007.tb03047.x PMid:17939547 Search in Google Scholar

Isbister, G.K., Page, C.B. (2013). Drug induced QT prolongation: the measurement and assessment of the QT interval in clinical practice. Br J Clin Pharmacol. 76(1): 48-57. https://doi.org/10.1111/bcp.12040 PMid:23167578 PMCid:PMC3703227370322723167578 Search in Google Scholar

Gralinski, M.R. (2003). The dog’s role in the preclinical assessment of QT interval prolongation. Toxicol Pathol. 31: 11-16. https://doi.org/10.1080/01926230390174887 PMid:1259742612597426 Search in Google Scholar

Ether, N.D., Jantre, S.R., Sharma, D.B., Leishman, D.J., Bailie, M.B., Lauver, D.A. (2022). Improving corrected QT; Why individual correction is not enough. J Pharmacol Toxicol Methods. 113, 107126. https://doi.org/10.1016/j.vascn.2021.107126 PMid:3465576034655760 Search in Google Scholar

Dekker, J.M., Crow, R.S., Hannan, P.J., Schouten, E.G., Folsom, A.R. (2004). Heart rate-corrected QT interval prolongation predicts risk of coronary heart disease in black and white middle-aged men and women: the ARIC study. J Am Coll Cardiol. 43(4): 565-571. https://doi.org/10.1016/j.jacc.2003.09.040 PMid:1497546414975464 Search in Google Scholar

Patel, S., Bhatt, L., Patel, R., Shah, C., Patel, V., Patel, J., Sundar, R., et al. (2017). Identifiction of appropriate QTc Formula in beagle dogs for nonclinical safety assesment. Regul Toxicol Pharmacol. 89, 118-124. https://doi.org/10.1016/j.yrtph.2017.07.026 PMid:2875126028751260 Search in Google Scholar

Koyama, H., Yoshii, H., Yabu, H., Kumada, H., Fukuda, K., Mitani, S., Rousselot, J.F., et al. (2004). Evaluation of QT interval prolongation in dogs with heart failure. J Vet Med Sci. 66(9): 1107-1111. https://doi.org/10.1292/jvms.66.1107 PMid:1547247515472475 Search in Google Scholar

Batey, A.J., Doe, C.P.A. (2002). A method for QT correction based on beat-to-beat analysis of the QT/RR interval relationship in conscious telemetred beagle dogs. J Pharmacol Toxicol Methods. 48(1): 11-19. https://doi.org/10.1016/S1056-8719(03)00009-1 PMid:1275003712750037 Search in Google Scholar

Chiang, A.Y., Holdsworth, D.L., Leishman, D.J. (2006). A one-step approach to the analysis of the QT interval in conscious telemetrized dogs. J Pharmacol Toxicol Methods. 54(2): 183-188. https://doi.org/10.1016/j.vascn.2006.02.004 PMid:1656711316567113 Search in Google Scholar

Andršová, I., Hnatkova, K., Šišáková, M., Toman, O., Smetana, P., Huster, K.M., Barthel, P., et al. (2021). Infuence of heart rate correction formulas on QTc interval stability. Sci Rep. 11(1): 14269. https://doi.org/10.1038/s41598-021-93774-9 PMid:34253795 PMCid:PMC8275798827579834253795 Search in Google Scholar

Kmecova, J., Klimas, J. (2010). Heart rate correction of the QT duration in rats. Eur J Pharmacol. 641(2-3): 187-192. https://doi.org/10.1016/j.ejphar.2010.05.038 PMid:2055392020553920 Search in Google Scholar

eISSN:
1857-7415
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other, Medicine, Basic Medical Science, Veterinary Medicine