Accès libre

Red Persistent Luminescence and Trap Properties of Mg2SiO4: Mn2+, M3+ (M3+ = B3+; Al3+; Ga3+; In3+) Material

   | 30 mars 2024
À propos de cet article

Citez

Vitola, V., Millers, D., Bite, I., Smits, K., & Spustaka, A. (2019). Recent Progress in Understanding the Persistent Luminescence in SrAl2O4: Eu,Dy. Materials Science and Technology (United Kingdom), 35 (14), 1661–1677. DOI:10.1080/02670836.2019. 1649802Search in Google Scholar

Richard, C., & Viana, B. (2022). Persistent X-Ray-Activated Phosphors: Mechanisms and Applications. Light: Science & Applications, 11 (1), 123. DOI:10.1038/s41377-022-00808-6Search in Google Scholar

Jain, A., Kumar, A., Dhoble, S. J., & Peshwe, D. R. (2016). Persistent Luminescence: An Insight. Renewable and Sustainable Energy Reviews, 65, 135–153. DOI:10.1016/j. rser.2016.06.081Search in Google Scholar

Li, Y., Gecevicius, M., & Qiu, J. (2016). Long Persistent Phosphors – From Fundamentals to Applications. Chemical Society Reviews, 45 (8), 2090–2136. DOI:10.1039/C5CS00582ESearch in Google Scholar

Poelman, D., Van der Heggen, D., Du, J., Cosaert, E., & Smet, P. F. (2020). Persistent Phosphors for the Future: Fit for the Right Application. Journal of Applied Physics, 128 (24), 240903. DOI:10.1063/5.0032972Search in Google Scholar

Liang, Y., Liu, F., Chen, Y., Wang, X., Sun, K., & Pan, Z. (2017). Extending the Applications for Lanthanide Ions: Efficient Emitters in Short-Wave Infrared Persistent Luminescence. Journal of Materials Chemistry C, 5 (26), 6488–6492. DOI:10.1039/C7TC01436HSearch in Google Scholar

Wang, X., Zhang, Z., Tang, Z., & Lin, Y. (2003). Characterization and Properties of a Red and Orange Y2O2S-Based Long Afterglow Phosphor. Materials Chemistry and Physics, 80 (1), 1–5. DOI:10.1016/S0254-0584(02)00097-4Search in Google Scholar

Gartia, R. K., & Chandrasekhar, N. (2016). Physical Basis of Persistent Luminescence: The Case of Europium Doped Ca1−xSrxS. Journal of Alloys and Compounds, 683, 157–163. DOI:10.1016/j.jallcom.2016.05.087Search in Google Scholar

Zhuang, Y., Ueda, J., & Tanabe, S. (2014). Multi-Color Persistent Luminescence in Transparent Glass Ceramics Containing Spinel Nano-Crystals with Mn2+ Ions. Applied Physics Letters, 105 (19), 3–7. DOI:10.1063/1.4901749Search in Google Scholar

Kong, J., Zheng, W., Liu, Y., Li, R., Ma, E., Zhu, H., & Chen, X. (2015). Persistent Luminescence from Eu3+ in SnO2 Nanoparticles. Nanoscale, 7 (25), 11048–11054. DOI:10.1039/c5nr01961cSearch in Google Scholar

Pihlgren, L., Laihinen, T., Rodrigues, L. C. V., Carlson, S., Eskola, K. O., Kotlov, A. ... & Hölsä, J. (2014). On the Mechanism of Persistent Up-conversion Luminescence in the ZrO2: Yb3+,Er3+ Nanomaterials. Optical Materials, 36 (10), 1698–1704. DOI:10.1016/j.optmat.2014.01.027Search in Google Scholar

Lin, L., Yin, M., Shi, C., & Zhang, W. (2008). Luminescence Properties of a New Red Long-lasting Phosphor: Mg2SiO4: Dy3+, Mn2+. Journal of Alloys and Compounds, 455 (1–2), 327–330. DOI:10.1016/j.jallcom.2007.01.059Search in Google Scholar

Doke, G., Krieke, G., Antuzevics, A., Sarakovskis, A., & Berzina, B. (2023). Optical Properties of Red-Emitting Long Afterglow Phosphor Mg2Si1-xGexO4: Mn2+/Mn4+. Optical Materials, 137, 113500. DOI:10.1016/j.optmat.2023.113500Search in Google Scholar

Jia, D., & Yen, W. M. (2003). Enhanced VK3+ Center Afterglow in MgAl2O4 by Doping with Ce3+. Journal of Luminescence, 101 (1–2), 115–121. DOI:10.1016/S0022-2313(02)00394-0Search in Google Scholar

Vitola, V., Lahti, V., Bite, I., Spustaka, A., Millers, D., Lastusaari, M., ... & Smits, K. (2021). Low Temperature Afterglow from SrAl2O4: Eu, Dy, B Containing Glass. Scripta Materialia, 190, 86–90. DOI:10.1016/j.scriptamat.2020.08.023Search in Google Scholar

Zhou, D., Song, Z., Zhou, H., & Liu, Q. (2020). Enhanced Persistent Luminescence via Si4+ Co-doping in Y3Al2Ga3O12: Ce3+, Yb3+, B3+. Journal of Luminescence, 222, 117190. DOI:10.1016/j.jlumin.2020.117190Search in Google Scholar

Noto, L. L., Pitale, S. S., Gusowki, M. A., Terblans, J. J., Ntwaeaborwa, O. M., & Swart, H. C. (2013). Afterglow Enhancement with In3+ Codoping in CaTiO3: Pr3+ Red Phosphor. Powder Technology, 237 (3), 141–146. DOI:10.1016/j.powtec.2013.01.029Search in Google Scholar

Doke, G., Kalnina, A., Cipa, J., Springis, M., & Sarakovskis, A. (2022). Optical Properties of Near Infrared Persistent Phosphor CaZnGe2O6: Cr3+, M3+ (M3+ = B3+; Al3+; Ga3+). Solid State Communications, 354, 114894. DOI:10.1016/j.ssc.2022.114894Search in Google Scholar

Awad, A., Koster Van Groos, A. F., & Guggenheim, S. (2000). Forsteritic Olivine: Effect of Crystallographic Direction on Dissolution Kinetics. Geochimica et Cosmochimica Acta, 64 (10), 1765–1772. DOI:10.1016/S0016-7037(99)00442-1Search in Google Scholar

Shannon, R. D. (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32 (5), 751–767. DOI:10.1107/S0567739476001551Search in Google Scholar

Avouris, P., & Morgan, T. N. (1981). A Tunneling Model for the Decay of Luminescence in Inorganic Phosphors: The Case of Zn2SiO4: Mn. The Journal of Chemical Physics, 74 (8), 4347–4355. DOI:10.1063/1.441677Search in Google Scholar

Doke, G., Antuzevics, A., Krieke, G., Kalnina, A., & Sarakovskis, A. (2022). Novel Broadband Near-Infrared Emitting Long Afterglow Phosphor MgGeO3: Cr3+. Journal of Alloys and Compounds, 918, 165768. DOI:10.1016/j.jallcom.2022.165768Search in Google Scholar

Bos, A. J. J. (2006). Theory of Thermoluminescence, Radiation Measurements, 41, S45–S56. DOI:10.1016/j.radmeas.2007.01. 003Search in Google Scholar

Rasheedy, M. S. (2005). Method of Hoogenstraaten as a Tool for Obtaining the Trap Parameters of General-Order Thermoluminescence Glow Peaks. Radiation Effects and Defects in Solids, 160 (9), 383–390. DOI:10.1080/10420150500459999Search in Google Scholar

Doke, G., Antuzevics, A., Krieke, G., Kalnina, A., Springis, M., & Sarakovskis, A. (2021). UV and X-Ray Excited Red Persistent Luminescence in Mn2+ Doped MgGeO3 Material Synthesized in Air and Reducing Atmosphere. Journal of Luminescence, 234, 117995. DOI:10.1016/j. jlumin.2021.117995Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics