Accès libre

Numerical Modelling of a Turbine Flow Meter Used as Part of the Hydrogen Compressor System

À propos de cet article

Citez

Bezrukovs, V., Bezrukovs, Vl., Bezrukovs, D., Konuhova, M., & Berzins, A. (2022). Hydrogen Hydraulic Compression Device. LVP2022000071, 31.08.2022. Search in Google Scholar

Benard, Ing C. J. (1988). Handbook of fluid flowmetering (1st ed.). UK: Trade & Technical Press. Search in Google Scholar

International Organization of Legal Metrology. (n.d.). OIML Website. Available at https://www.oiml.org Search in Google Scholar

European Association of National Metrology Institutes. (n.d.) Metrology for Regulation Event. Available at https://www.euramet.org Search in Google Scholar

Guo, S., Sun, L., Zhang, T., Yang, W., & Yang, Z. (2013). Analysis of Viscosity Effect on Turbine Flowmeter Performance Based on Experiments and CFD Simulations. Flow Meas. Instrum., 34, 42–52. doi: 10.1016/j. flowmeasinst.2013.07.016. Search in Google Scholar

Tegtmeier, C. (2015). CFD Analysis of Viscosity Effects on Turbine Flow Meter Performance and Calibration. Master Thesis, University of Tennessee. https://trace.tennessee.edu/utk_gradthes/3415 Search in Google Scholar

Ruiz, V., Pereira, M.T., & Taira, N.M. (2013). Turbine flowmeter and viscosity effects of liquid hydrocarbons. In 16th Int. Flow Meas. Conf. 2013, FLOMEKO 2013, (pp. 479–483). Search in Google Scholar

Guo, S., Yang, Z., Wang, F., Zhao, N., & Li, X. (2021). Optimal Design of Wide Viscosity Range Turbine Flow Sensor Based on Flow Field Analysis. Flow Meas. Instrum., 79, 101909. doi: 10.1016/j. flowmeasinst.2021.101909. Search in Google Scholar

Guo, S., Wang, S., Zheng, X., Zhao, N., Fang, L., & Li, X. (2019). Optimization of turbine flow sensor structure based on the velocity distribution inlet. In I2MTC 2019 – 2019 IEEE Int. Instrum. Meas. Technol. Conf. Proc. doi: 10.1109/I2MTC.2019.8827083. Search in Google Scholar

Wang, Z., & Zhang, T. (2010). Optimization of geometric parameters of the rotor in the turbine flowmeter. In 15th Int. Flow Meas. Conf. 2010, FLOMEKO 2010, (pp. 896–906). Search in Google Scholar

Ren, Z., Zhou, W., & Li, D. (2022). Response and Flow Characteristics of a Dual-Rotor Turbine Flowmeter. Flow Meas. Instrum., 83, 102120. doi: 10.1016/j. flowmeasinst.2022.102120. Search in Google Scholar

Lijun, S., Zhaoying, Z., & Tao, Z. (2007). Quantitative Optimization Method for Rotor Geometric Parameters of Liquid Turbine Flow Sensor. Chin. J. Sci. Instrum., 28 (3), 493. Search in Google Scholar

Saboohi, Z., Sorkhkhah, S., & Shakeri, H. (2015). Developing a Model for Prediction of Helical Turbine Flowmeter Performance Using CFD. Flow Meas. Instrum., 42, 47–57. Search in Google Scholar

Lavante, E.V., Kettner, T., & Lazaroski, N. (2003). Numerical simulation of unsteady three-dimensional flow fields in a turbine flowmeter. In Proceedings of the International Conference on Flow Measurement. 12–14 May 2003, Groningen, the Netherlands. Search in Google Scholar

Lavante, E.V., Banaszak, U., & Kettner, T. (2004). Numerical simulation of Reynolds number effects in a turbine flowmeter. In Proceedings of the International Conference on Flow Measurement, (pp. 575–582). Guilin, Chine. Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics