À propos de cet article

Citez

Dhara, K., & Mahapatra, D.R. (2019). Recent Advances in Electrochemical Nonenzymatic Hydrogen Peroxide Sensors Based on Nanomaterials: A Review. J. Mater. Sci., 54, 12319–12357. https://doi.org/10.1007/s10853-019-03750-y Search in Google Scholar

Mohanan, P.V., Sangeetha, V., Sabareeswaran, A., Muraleedharan, V., Jithin, K., Vandana, U., & Varsha, S.B. (2021). Safety of 0.5% Hydrogen Peroxide Mist Used in the Disinfectiongateway for COVID-19. Environ. Sci. Pollut. Res. Int., 28 (47), 66602–66612. https://doi.org/10.1007/s11356-021-15164-y Search in Google Scholar

SCCP (Scientific Committee on Consumer Products). (2007). Opinion on Hydrogen Peroxide, in its Free Form or when Released, in Oral Hygiene Products and Tooth Whitening Products. Available at https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_122.pdf Search in Google Scholar

National Center for Biotechnology Information. (2022). PubChem Compound Summary for CID 784, Hydrogen Peroxide. Available at https://pubchem.ncbi.nlm.nih.gov/compound/Hydrogen-Peroxide Search in Google Scholar

Mahaseth, T., & Kuzminov, A. (2016). Potentiation of Hydrogen Peroxide Toxicity: From Catalase Inhibition to Stable DNA-Iron Complexes. Mutat. Res.: Rev. Mutat. Res. 773, 274–281. https://doi.org/10.1016/j.mrrev.2016.08.006 Search in Google Scholar

Schnabel, T., Mehling, S., Londong, J., & Springer, C. (2020). Hydrogen Peroxide-Assisted Photocatalytic Water Treatment for the Removal of Anthropogenic Trace Substances from the Effluent of Wastewater Treatment Plants. Water Sci. Technol. 82 (10), 2019–2028. https://doi.org/10.2166/wst.2020.481 Search in Google Scholar

Ksibi, M. (2006). Chemical Oxidation with Hydrogen Peroxide for Domestic Wastewater Treatment. Chem. Eng. J., 119 (2–3), 161–165. https://doi.org/10.1016/j.cej.2006.03.022 Search in Google Scholar

Xu, J., Zheng, X., Feng, Z., Lu, Z., Zhang, Z., Huang, W., ... & Cui, Y. (2021). Organic Wastewater Treatment by a Single-Atom Catalyst and Electrolytically Produced H2O2. Nat. Sustain., 4, 233–241. https://doi.org/10.1038/s41893-020-00635-w Search in Google Scholar

Arefin, S., Sarker, M.A.H., Islam, M.A., Harun-ur-Rashid, M., & Islam, M.N. (2017). Use of Hydrogen Peroxide (H2O2) in Raw Cow’s Milk Preservation. J. Adv. Vet. Anim. Res. 4 (4), 371–377. https://doi.org/10.5455/javar.2017.d236 Search in Google Scholar

Silva, E., Oliveira, J., Silva, Y., Urbano, S., Sales, D., Moraes, E., … & Anaya, K. (2020). Lactoperoxidase System in the Dairy Industry: Challenges and Opportunities. Czech J. Food Sci. 38, 337–346. https://doi.org/10.17221/103/2020-CJFS Search in Google Scholar

Gaikwad, R., Thangaraj, P.R., & Sen, A.K. (2021). Direct and Rapid Measurement of Hydrogen Peroxide in Human Blood Using a Microfluidic Device. Sci. Rep. 11 (1), 112960 https://doi.org/10.1038/s41598-021-82623-4 Search in Google Scholar

Totsuka, K., Ueta, T., Uchida, T., Roggia, M.F., Nakagawa, S., Vavvas, D.G., ... & Aihara, M. (2019). Oxidative Stress Induces Ferroptotic Cell Death in Retinal Pigment Epithelial Cells. Exp. Eye Res. 181, 316–324. https://doi.org/10.1016/j.exer.2018.08.019 Search in Google Scholar

Whittemore, E.R., Loo, D.T., Watt, J.A., & Cotman, C.W. (1995). A Detailed Analysis of Hydrogen Peroxide-Inducded Cell Death in Primary Neuronal Culture. Neurosci. 67 (4), 921–932. https://doi.org/10.1016/0306-4522(95)00108-u Search in Google Scholar

Guesmi, F., Bellamine, H., & Landoulsi, A. (2018). H2O2-Induced Oxidative Stress, AChE Inhibition and Mediated Brain Injury Attenuated by Thymus algeriensis. Appl. Physiol. Nutr. Metab., 43 (12), 1275–1281. https://doi.org/10.1139/apnm-2018-0107 Search in Google Scholar

Dev, S., Kumari, S., Singh, N., Bal, S.K., Seth, P., & Mukhopadhyay, C. K. (2015). Role of Extracellular Hydrogen Peroxide in Regulation of Iron Home- Ostasis Genes in Neuronal Cells: Implication in Iron Accumulation. Free Radic. Biol. Med., 86, 78–89. https://doi.org/10.1016/j.freeradbiomed.2015.05.025 Search in Google Scholar

Tabner, B.J., El-Agnaf, O.M.A., Turnbull, S., German, M.J., Paleologou, K.E., Hayashi, Y., … & Allsop, D. (2005). Hydrogen Peroxide Is Generated during the Very Early Stages of Aggregation of the Amyloid Peptides Implicated in Alzheimer Disease and Familial British Dementia. J. Biol. Chem., 280 (43), 35789–35792. https://doi.org/10.1074/jbc.C500238200 Search in Google Scholar

Lee, S., Lee, Y.J., Kim, J.H., & Lee, G. (2020). Electrochemical Detection of H2O2 Released from Prostate Cancer Cells Using Pt Nanoparticle-Decorated rGO–CNT Nanocomposite-Modified Screen-Printed Carbon Electrodes. Chemosensors 8 (3), 63. https://doi.org/10.3390/chemosensors8030063 Search in Google Scholar

Kolbasina, N.A., Gureev, A.P., Serzhantova, O.V., Mikhailov, A.A., Moshurov, I.P., Starkov, A.A., & Popov, V.N. (2020). Lung Cancer Increases H2O2 Concentration in the Exhaled Breath Condensate, Extent of mtDNA Damage, and mtDNA Copy Number in Buccal Mucosa. Heliyon, 6 (6), e04303. https://doi.org/10.1016/j.heliyon.2020.e04303 Search in Google Scholar

Abdalla, A., Jones, W., Flint, M.S., & Patel, B.A. (2021). Bicomponent Composite Electrochemical Sensors for Sustained Monitoring of Hydrogen Peroxide in Breast Cancer Cells. Electrochim. Acta, 398, 139314. https://doi.org/10.1016/j.electacta.2021.139314 Search in Google Scholar

Tavakkoli, H., Akhond, M., Ghorbankhani, G.A., & Absalan, G. (2020). Electrochemical Sensing of Hydrogen Peroxide Using a Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes and Zein Nanoparticle Composites: Application to HepG2 Cancer Cell Detection. Microchim. Actam, 187, 105. https://doi.org/10.1007/s00604-019-4064-7 Search in Google Scholar

Wu, Y., Guo, T., Qiu, Y., Lin, Y., Yao, Y., Lian, W., ... & Yang, H. (2019). An Inorganic Prodrug, Tellurium Nanowires with Enhanced ROS Generation and GSH Depletion for Selective Cancer Therapy. Chem. Sci. 10 (29), 7068–7075. https://doi.org/10.1039/c9sc01070j Search in Google Scholar

Ahmad, T., Iqbal, A., Halim, S.A., Uddin, J., Khan, A., El Deeb, S., & Al-Harrasi, A. (2022). Recent Advances in Electrochemical Sensing of Hydrogen Peroxide (H2O2) Released from Cancer Cells. Nanomaterials, 12 (9), 1475. https://doi.org/10.3390/nano12091475 Search in Google Scholar

Maier, D., Laubender, E., Basavanna, A., Schumann, S., Güder, F., Urban, G.A., & Dincer, C. (2019). Toward Continuous Monitoring of Breath Biochemistry: A Paper-Based Wearable Sensor for Real-Time Hydrogen Peroxide Measurement in Simulated Breath. ACS Sens., 4 (11), 2945–2951. https://doi.org/10.1021/acssensors.9b01403 Search in Google Scholar

Xie, J., Cheng, D., Zhou, Z., Pang, X., Liu, M., Yin, P., ... & Yao, S. (2020). Hydrogen Peroxide Sensing in Body Fluids and Tumor Cells via In situ Produced Redox couples on Two-dimensional Holey CuCo2O4 Nanosheets. Microchim. Acta, 187 (8), 469. https://doi.org/10.1007/s00604-020-04389-2 Search in Google Scholar

Kakeshpour, T., Metaferia, B., Zare, R.N., & Bax, A. (2022). Quantitative Detection of Hydrogen Peroxide in Rain, Air, Exhaled Breath, and Biological Fluids by NMR Spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 119 (8), e2121542119. https://doi.org/10.1073/pnas.2121542119 Search in Google Scholar

Liu, H., Weng, L., & Yang, C. (2017). A Review on Nanomaterial-Based Electrochemical Sensors for H2O2, H2S and NO inside Cells or Released by Cells. Microchim. Acta, 1847, 1267–1283. https://doi.org/10.1007/s00604-017-2179-2 Search in Google Scholar

Perini, J.A.d.L., Silva, B.C.e., Tonetti, A.L., & Nogueira, R.F.P. (2017). Photo-Fenton Degradation of the Pharmaceuticals Ciprofloxacin and Fluoxetine after Anaerobic Pre-treatment of Hospital Effluent. Environ. Sci. Pollut. Res., 24, 6233–6240. https://doi.org/10.1007/s11356-016-7416-4 Search in Google Scholar

Al-Awadie, N.S.T., & Khudhair, A.F. (2015). Determination of Hydrogen Peroxide in Some Local Pharmaceutical Disinfectants by Continuous Flow Injection Analysis via Turbidimetric (T180o) and Scattered Light Effect at Two Opposite Positions (2N90o) Using Ayah 4SW-3D-T180o -2N90o -Solar - CFI Analyser. Iraqi J. Sci., 56 (1C), 577–592. Search in Google Scholar

Payal, A., Krishnamoorthy, S., Elumalai, A., Moses, J.A., & Anandharamakrishnan, C. (2021). A Review on Recent Developments and Applications of Nanozymes in Food Safety and Quality Analysis. Food Anal. Methods, 14, 1537–1558. https://doi.org/10.1007/s12161-021-01983-9 Search in Google Scholar

Chen, Q., Lin, T., Huang, J., Chen, Y., Guo, L., & Fu, F. (2018). Colorimetric Detection of Residual Hydrogen Peroxide in Soaked Food Based on Au@Ag Nanorods. Anal. Methods, 10, 504–507. https://doi.org/10.1039/C7AY02819A Search in Google Scholar

Navale, D., & Gupta, S. (2019). Detection of Adultered Formalin and Hydrogen Peroxide in Milk. JLTEMAS, 8 (8), 19–21. Search in Google Scholar

Vasconcelos, H., Matias, A., Jorge, P., Saraiva, C., Mendes, J., Araújo, J., … & Coelho, L.C.C. (2021). Optical Biosensor for the Detection of Hydrogen Peroxide in Milk. Chem. Proc., 5 (1), 55. https://doi.org/10.3390/CSAC2021-10466 Search in Google Scholar

Huang, Y., Wang, L., Chen, B., Zhang, Q., & Zhu, R. (2020). Detecting Hydrogen Peroxide Reliably in Water via Ion Chromatography: A Method Evaluation Update and Comparison in the Presence of Interfering Components. Environ. Sci.: Water Res. Technol., 6, 2396–2404. https://doi.org/10.1039/d0ew00234h Search in Google Scholar

Su, J., Zhang, S., Wang, C., Li, M., Wang, J., Su, F., & Wang, Z. (2021). A Fast and Efficient Method for Detecting H2O2 by a Dual-Locked Model Chemosensor. ACS Omega, 6 (23), 14819–14823. https://doi.org/10.1021/acsomega.1c00384 Search in Google Scholar

Fong, D., & Swager, T.M. (2021). Trace Detection of Hydrogen Peroxide via Dynamic Double Emulsions. J. Am. Chem. Soc., 143 (11), 4397–4404. https://doi.org/10.1021/jacs.1c00683 Search in Google Scholar

Ito, E., Watabe, S., Morikawa, M., Kodama, H., Okada, R., & Miura, T. (2013). Detection of H2O2 by fluorescence correlation spectroscopy. In E. Cadenas, L. Packer (eds.), Hydrogen Peroxide and Cell Signaling, Part A (pp 135–143). Academic Press: Cambridge, Massachusetts. https://doi.org/10.1016/B978-0-12-405883-5.00008-9 Search in Google Scholar

Rezende, F., Brandes, R.P., & Schröder, K. (2018). Detection of H2O2 with Fluorescent Dyes. Antioxid. Redox Signal., 29 (6), 585–602. https://doi.org/10.1089/ars.2017.7401 Search in Google Scholar

Teodoro, K.B.R., Migliorini, F.L., Christinelli, W.A., & Correa, D.S. (2019). Detection of Hydrogen Peroxide (H2O2) Using a Colorimetric Sensor Based on Cellulose Nanowhiskers and Silver Nanoparticles. Carbohydrate Polymers, 212, 235–241. https://doi.org/10.1016/j.carbpol.2019.02.053 Search in Google Scholar

Zhu, P., Xu, Z., Cai, L., & Chen, J. (2021). Porphyrin Iron-Grafted Mesoporous Silica Composites for Drug Delivery, Dye Degradation and Colorimetric Detection of Hydrogen Peroxide. Nanoscale Res. Lett., 16 (1), 41. https://doi.org/10.1186/s11671-021-03501-6 Search in Google Scholar

Moßhammer, M., Kühl, M., & Koren, K. (2017). Possibilities and Challenges for Quantitative Optical Sensing of Hydrogen Peroxide. Chemosensors, 5, 28. https://doi.org/10.3390/chemosensors5040028 Search in Google Scholar

Gričar, E., Kalcher, K., Genorio, B., & Kolar, M. (2021). Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO2 Modified Carbon Paste Electrodes. Sensors, 21, 8301. https://doi.org/10.3390/s21248301 Search in Google Scholar

Gorduk, O., Gorduk, S., & Sahin, Y. (2020). Fabrication of Tetra-Substituted Copper(II) Phthalocyanine-Graphene Modified Pencil Graphite Electrode for Amperometric Detection of Hydrogen Peroxide. ECS J. Solid State Sci. Technol., 9, 06103. https://doi.org/10.1149/2162-8777/ab9c7a Search in Google Scholar

Wang, Q., Zhang, X., Chai, X., Wang, T., Cao, T., Li, Y., & Qi, W. (2021). An Electrochemical Sensor for H2O2 Based on Au Nanoparticles Embedded in UiO-66 Metal−Organic Framework Films. ACS Appl. Nano Mater., 4 (6), 6103–6110. https://doi.org/10.1021/acsanm.1c00915 Search in Google Scholar

Bao-Kai, M., Mian, L., Ling-Zhi, C., Xin-Chu, W., Cai, S., & Qing, H. (2020). Enzyme-MXene Nanosheets: Fabrication and Application in Electrochemical Detection of H2O2. J. Inorg. Mater., 35 (1), 131–138. https://doi.org/10.15541/jim20190139 Search in Google Scholar

Yu, Y., Pan, M., Peng, J., Hu, D., Hao, Y., & Qian, Z. (2020). A Review on Recent Advances in Hydrogen Peroxide Electrochemical Sensors for Applications in Cell Detection. Chin. Chem. Lett., 33, (9), 4133–4145. https://doi.org/10.1016/j.cclet.2022.02.045 Search in Google Scholar

Portorreal-Bottier, A., Gutiérrez-Tarriño, S., Calventea, J.J., Andreu, R., Roldán, E., Oña-Burgos, P., & Olloqui-Sariego, J.L. (2022). Enzyme-like Activity of Cobalt-MOF Nanosheets for Hydrogen Peroxide Electrochemical Sensing. Sens. Actuat. B Chem., 368, 132129. https://doi.org/10.1016/j.snb.2022.132129 Search in Google Scholar

Bollella, P., & Gorton, L. (2018). Enzyme Based Amperometric Biosensors. Curr. Opin. Electrochem., 10, 157–173. https://doi.org/10.1016/j.coelec.2018.06.003 Search in Google Scholar

Olloqui-Sariego, J.L., Calvente, J.J., & Andreu, R. (2021). Immobilizing Redox Enzymes at Mesoporous and Nanostructured Electrodes. Curr. Opin. Electrochem., 26, 100658. https://doi.org/10.1016/j.coelec.2020.100658 Search in Google Scholar

Nestor, U., Frodouard, H., & Theoneste, M. (2021). A Brief Review of How to Construct an Enzyme-Based H2O2 Sensor Involved in Nanomaterials. Adv. Nanopart., 10, 1–25. https://doi.org/10.4236/anp.2021.101001 Search in Google Scholar

Sardaremelli, S., Hasanzadeh, M., & Seidi, F. (2021). Enzymatic Recognition of Hydrogen Peroxide (H2O2) in Human Plasma Samples Using HRP Immobilized on the Surface of Poly(arginine-toluidine blue)- Fe3O4 Nanoparticles Modified Polydopamine; A Novel Biosensor. J. Mol. Recognit., 34 (11), e2928. https://doi.org/10.1002/jmr.2928 Search in Google Scholar

Wu, Z., Sun, L.P., Zhou, Z., Li, Q., Huo, L.H., & Zhao, H. (2018). Efficient Nonenzymatic H2O2 Biosensor Based on ZIF-67 MOF Derived Co Nanoparticles Embedded N-doped Mesoporous Carbon Composites. Sens. Actuat. B Chem., 276, 142–149. https://doi.org/10.1016/j.snb.2018.08.100 Search in Google Scholar

Heydaryan, K., Kashi, M.A., Sarifi, N., & Ranjbar-Azada, M. (2020). Efficiency Improvement in Non-enzymatic H2O2 Detection Induced by the Simultaneous Synthesis of Au and Ag Nanoparticles in an RGO/Au/Fe3O4/Ag Nanocomposite. New J. Chem., 44, 9037–9045. https://doi.org/10.1039/d0nj00526f Search in Google Scholar

Rashed, M.A., Faisal, M., Harraz, F.A., Jalalah, M., Alsaiari, M., & Alsareii, S.A. (2021). A Highly Efficient Nonenzymatic Hydrogen Peroxide Electrochemical Sensor Using Mesoporous Carbon Doped ZnO Nanocomposite. J. Electrochem. Soc., 168 (2), 027512. https://doi.org/10.1149/1945-7111/abe44b Search in Google Scholar

Nishan, U., Niaz, A., Muhammad, N., Asad, M., Shah, A.-u.-H.A., Khan, N., … & Rahim, A. (2021). Non-enzymatic Colorimetric Biosensor for Hydrogen Peroxide Using Lignin-Based Silver Nanoparticles Tuned with Ionic Liquid as a Peroxidase Mimic. Arabian J. Chem., 14 (6), 103164. https://doi.org/10.1016/j.arabjc.2021.103164 Search in Google Scholar

Bukkitgar, S.D., Kumar, P.S., Singh, S., Singh, V., Reddy, K.R., Sadhu, V., … & Naveen, S. (2020). Functional Nanostructured Metal Oxides and its Hybrid Electrodes – Recent Advancements in Electrochemical Biosensing Applications. Microchem. J., 159, 105522. https://doi.org/10.1016/j.microc.2020.105522 Search in Google Scholar

Chang, Y.S., Li, J.H., Chen, Y.C., Ho, W.H., Song, Y.D., & Kung, C.W. (2020). Electrodeposition of Pore-Confined Cobalt in Metaleorganic Framework Thin Films toward Electrochemical H2O2 Detection. Electrochim. Acta, 347, 136276. https://doi.org/10.1016/j.electacta.2020.136276 Search in Google Scholar

Agnihotri, A. S., Varghese, A., & Nidhin, M. (2021). Transition Metal Oxides in Electrochemical and Bio Sensing: A State-of-Art Review. Appl. Surf. Sci. Adv., 4, 100072. https://doi.org/10.1016/j.apsadv.2021.100072 Search in Google Scholar

Tammineni, V.S., Espenti, C.S., Mutyala, S., & Arunachalam, S.V. (2021). Metal oxide-modified electrochemical sensors for toxic chemicals. In A. Pandikumar & P. Rameshkumar (eds.), Metal Oxides in Nanocomposite-Based Electrochemical Sensors for Toxic Chemicals (pp. 19–49). Elsevier Science: Amsterdam. https://doi.org/10.1016/B978-0-12-820727-7.00009-4 Search in Google Scholar

Trujillo, R.M., Barraza, D.E., Zamora, M.L., Cattani-Scholz, A., & Madrid, R.E. (2021). Nanostructures in Hydrogen Peroxide Sensing. Sensors, 21 (6), 2204. https://doi.org/10.3390/s21062204 Search in Google Scholar

Alsaiari, M., Younus, A.R., Rahim, A., Alsaiari, R., & Muhammad, N. (2021). An Electrochemical Sensing Platform of Cobalt Oxide@SiO2/C Mesoporous Composite for the Selective Determination of Hydrazine in Environmental Samples. Microchem. J., 165, 106171. https://doi.org/10.1016/j.microc.2021.106171 Search in Google Scholar

Kogularasu, S., Govindasamy, M., Chen, S.M., Akilarasan, M., & Mania, V. (2017). 3D Graphene Oxide-Cobalt Oxide Polyhedrons for Highly Sensitive Non-Enzymatic Electrochemical Determination of Hydrogen Peroxide. Sens. Actuat. B Chem., 253, 773–783. https://doi.org/10.1016/j.snb.2017.06.172 Search in Google Scholar

Kumarage, G.W.C., & Comini, E. (2021). Low-Dimensional Nanostructures Based on Cobalt Oxide (Co3O4) in Chemical-Gas Sensing. Chemosensors, 9 (8), 197. https://doi.org/10.3390/chemosensors9080197 Search in Google Scholar

Rabani, I., Yoo, J., Kim, H.S., Lam, D.V., Hussain, S., Karuppasamy, K., & Seo, Y.S. (2021). Highly Dispersive Co3O4 Nanoparticles Incorporated into a Cellulose Nanofiber for a High-performance Flexible Supercapacitor. Nanoscale 13, 355–370. https://doi.org/doi.org/10.1039/d0nr06982e Search in Google Scholar

Fan, Y., Chen, H., Li, Y., Zheng, D.C., & Xue, F.C. (2021). PANI-Co3O4 with Excellent Specific Capacitance as an Electrode for Supercapacitors. Ceram. Int., 47 (6), 8433–8440. https://doi.org/10.1016/j.ceramint.2020.11.208 Search in Google Scholar

Ibupoto, Z.H., Elhag, S., AlSalhi, M.S., Nur, O., & Willander, M. (2014). Effect of Urea on the Morphology of Co3O4 Nanostructures and Their Application for Potentiometric Glucose Biosensor. Electroanalysis, 26 (8), 1773–1781. https://doi.org/10.1002/elan.201400116 Search in Google Scholar

Hussain, M., Ibupoto, Z.H., Abbasi, M.A., Nur, O., & Willander, M. (2014). Effect of Anions on the Morphology of Co3O4 Nanostructures Grown by Hydrothermal Method and their pH Sensing Application. J. Electroanal. Chem., 717–718, 78–82. https://doi.org/10.1016/j.jelechem.2014.01.011 Search in Google Scholar

Kannan, P., Maiyalagan, T., Marsili, E., Ghosh, S., Guo, L., Huang, Y., … & Jönsson-Niedziolka, M. (2017). Highly Active 3-Dimensional Cobalt Oxide Nanostructures on the Flexible Carbon Substrates for Enzymeless Glucose Sensing. Analyst, 142, 4299–4307. https://doi.org/10.1039/c7an01084b Search in Google Scholar

Wang, M., Jiang, X., Liu, J., Guo, H., & Liu, C. (2015). Highly Sensitive H2O2 Sensor Based on Co3O4 Hollow Sphere Prepared via a Template-Free Method. Electrochim. Acta, 182, 613–620. https://doi.org/10.1016/j.electacta.2015.08.116 Search in Google Scholar

Mai, L.N.T., Bui, Q.B., Bachc, L.G., & Nhac-Vu, H.-T. (2020). A Novel Nanohybrid of Cobalt Oxide-Sulfide Nanosheets Deposited Three-Dimensional Foam as Efficient Sensor for Hydrogen Peroxide Detection. J. Electroanal.l Chem., 857, 113757. https://doi.org/10.1016/j.jelechem.2019.113757 Search in Google Scholar

Barkaoui, S., Haddaoui, M., Dhaouadi, H., Raouafi, N., & Touati, F. (2015). Hydrothermal Synthesis of Urchin-like Co3O4 Nanostructures and their Electrochemical Sensing Performance of H2O2. J. Solid State Chem., 228, 226–231. https://doi.org/10.1016/j.jssc.2015.04.043 Search in Google Scholar

Shahid, M.M., Rameshkumar, P., & Huang, N.M. (2015). Morphology Dependent Electrocatalytic Properties of Hydrothermally Synthesized Cobalt Oxide Nanostructures. Ceram. Int. 41 (10), 13210–13217. https://doi.org/10.1016/j.ceramint.2015.07.098 Search in Google Scholar

Kong, L., Ren, Z., Zheng, N., Du, S., Wu, J., Tang, J., & Fu, H. (2014). Interconnected 1D Co3O4 Nanowires on Reduced Grapheme Oxide for Enzymeless H2O2 Detection. Nano Res., 8 (2), 469–480. https://doi.org/10.1007/s12274-014-0617-6 Search in Google Scholar

Yang, L., Xu, C., Ye, W., & Liu, W. (2015). An Electrochemical Sensor for H2O2 Based on a New Co-Metal-Organic Framework Modified Electrode. Sens. Actuat. B Chem., 215, 489–496. https://doi.org/10.1016/j.snb.2015.03.104 Search in Google Scholar

Xiong, L., Zhang, Y., Wu, S., Chen, F., Lei, L., Yu, L., & Li, C. Co3O4 Nanoparticles Uniformly Dispersed in Rational Porous Carbon Nano-Boxes for Significantly Enhanced Electrocatalytic Detection of H2O2 Released from Living Cells. Int. J. Mol. Sci., 23 (7), 3799. https://doi.org/10.3390/ijms23073799 Search in Google Scholar

Kannan, P., Maiyalagan, T., Pandikumar, A., Guo, L., Veerakumar, P., & Rameshkumar, P. (2019). Highly Sensitive Enzyme-free Amperometric Sensing of Hydrogen Peroxide in Real Samples Based on Co3O4 Nanocolumn Structures. Anal. Methods, 11, 2292–2302. https://doi.org/10.1039/c9ay00230h Search in Google Scholar

Atacan, K.J. (2019). CuFe2O4/Reduced Graphene Oxide Nanocomposite Decorated with Gold Nanoparticles as a New Electrochemical Sensor Material for L-cysteine Detection. Alloys Compd., 791, 391–401. https://doi.org/10.1016/j.jallcom.2019.03.303 Search in Google Scholar

Demir, N., Atacan, K., Ozmen, M., & Bas, S.Z. (2020). Design of a New Electrochemical Sensing System Based on MoS2-TiO2/Reduced Graphene Oxide Nanocomposite for Paracetamol Detection. New J. Chem., 44 (27), 11759–11767. https://doi.org/10.1039/d0nj02298e Search in Google Scholar

Dhulkefl, A.J., Atacan, K., Bas, S.Z., & Ozmen, M. (2020). Ag-TiO2-Reduced Graphene Oxide Hybrid Film for Electrochemical Detection of 8-hydroxy-2’-Deoxyguanosine as an Oxidative DNA Damage Biomarker. Anal. Methods, 12 (4), 499–506. https://doi.org/10.1039/c9ay02175b Search in Google Scholar

Arefin, S., Sarker, M.A.H., Islam, M.A., Harun-ur-Rashid, M., & Islam, M.N. (2017). Use of Hydrogen Peroxide (H2O2) in Raw Cow’s Milk Preservation. J. Adv. Vet. Anim. Res., 4 (4), 371–377. https://doi.org/10.5455/javar.2017.d236 Search in Google Scholar

Saha, B.K., Ali, M.Y., Chakraborty, M., Islam, Z., & Hira, A.K. (2003). Study of the Preservation of Raw Milk with Hydrogen Peroxide (H2O2) for Rural Dairy Farmers. Pakistan J. Nutrition, 2 (1), 36–42. https://doi.org/10.3923/pjn.2003.36.42 Search in Google Scholar

Dashe, D., Hansen, E.B., Kurtu, M.Y., Berhe, T., Eshetu, M., Hailu, Y., … & Shegaw, A. (2020). Preservation of Raw Camel Milk by Lactoperoxidase System Using Hydrogen Peroxide Producing Lactic Acid Bacteria. Open J. Anim. Sci., 10, 387–401. https://doi.org/10.4236/ojas.2020.103024 Search in Google Scholar

Forman, H.J., Bernardo, A., & Davies, K.J.A. (2016). Corrigendum to “What is the Concentration of Hydrogen Peroxide in Blood and Plasma?”. Arch. Biochem. Biophys., 603, 48–53. https://doi.org/10.1016/j.abb.2016.05.005 Search in Google Scholar

Atta, N.F., Gawad, S.A.A., Galal, A., Razik, A.A., & El-Gohary, A.R.M. (2021). Efficient Electrochemical Sensor for Determination of H2O2 in Human Serum Based on Nano Iron/Nickel Alloy/Carbon Nanotubes/Ionic Liquid Crystal Composite. J. Electroanal. Chem., 881, 114953. https://doi.org/10.1016/j.jelechem.2020.114953 Search in Google Scholar

Das, R.K., & Golder, A.K. (2017). Co3O4 Spinel Nanoparticles Decorated Graphite Electrode: Bio-mediated Synthesis and Electrochemical H2O2 Sensing. Electrochim. Acta, 251, 415–426. https://doi.org/10.1016/j.electacta.2017.08.122 Search in Google Scholar

Mihailova, I., Gerbreders, V., Krasovska, M., Sledevskis, E., Mizers, V., Bulanovs, A., & Ogurcovs, A. (2022). A Non-enzymatic Electrochemical Hydrogen Peroxide Sensor Based on Copper Oxide Nanostructures. Beilstein J. Nanotechnol., 13, 424–436. https://doi.org/10.3762/bjnano.13.35 Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics