Accès libre

The Role of Decentralized Electrode Boiler in Ancillary Services and District Heating: a Feasibility Assessment

À propos de cet article

Citez

Guzs, D., Utans, A., Sauhats, A., Junghans, G., & Silinevics, J. (2022). Resilience of the Baltic Power System When Operating in Island Mode. IEEE Transactions on Industry Applications, 58 (3), 3175–3183. doi: 10.1109/TIA.2022.3152714. Search in Google Scholar

Ivanova, P., Sauhats, A., & Linkevics, O. (2017). Cost-benefit analysis of electric boiler at combined heat and power plants. In IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), (pp. 1–6), Riga, Latvia, 2017. doi: 10.1109/RTUCON.2017.8124747. Search in Google Scholar

Parat. (n.d.). Parat Electrode Boiler. Available at https://www.parat.no/en/references/industry/parat-electrode-boiler/ Search in Google Scholar

AEA. (n.d.). Electric Boiler – High Voltage Solutions. Available at https://www.aea.dk/el-kedler/ Search in Google Scholar

Salman, C.A., Li, H., Li, P., & Yan, J. (2021). Improve the Flexibility Provided by Combined Heat and Power Plants (CHPs) – A Review of Potential Technologies. e-Prime – Advances in Electrical Engineering, Electronics and Energy, 1. doi: https://doi.org/10.1016/j.prime.2021.100023 Search in Google Scholar

Fernqvist, N., Broberg, S., & Toren, J. (2023). District Heating as a Flexibility Service: Challenges in Sector Coupling for Increased Solar and Wind Power Production in Sweden. Energy Policy, 172. doi: https://doi.org/10.1016/j.enpol.2022.113332. Search in Google Scholar

Gao, S., Jurasz, J., Li, H., Corsetti, E., & Yan, J. (2022). Potential Benefits from Participating in Day-ahead and Regulation Markets for CHPs. Applied Energy, 306 (A). doi: https://doi.org/10.1016/j.apenergy.2021.117974 Search in Google Scholar

Javanshir, N., Syri, S., Tervo, S., & Rosin, A. (2023). Operation of District Heat Network in Electricity and Balancing Markets with the Power-to-Heat Sector Coupling. Energy, 266. doi: https://doi.org/10.1016/j.energy.2022.126423. Search in Google Scholar

Boldrini, A., Navarro, J.P.J., Crijns-Graus, W.H.J., & van den Broek, M.A. (2022). The Role of District Heating Systems to provide Balancing Services in the European Union. Renewable and Sustainable Energy Reviews, 154. doi: https://doi.org/10.1016/j.rser.2021.111853 Search in Google Scholar

Corsetti, E., Riaz, S., & Riello, M. (2021). Modelling and Deploying Multi-Energy Flexibility: The Energy Lattice Framework. Advances in Applied Energy, 2. doi: https://doi.org/10.1016/j.adapen.2021.100030 Search in Google Scholar

Junghans, G., Silis, A., Marcina, K., & Ertmanis, K. (2020). Role of Balancing Markets in Dealing with Future Challenges of System Adequacy Caused by Energy Transmission. Latvian Journal of Physics and Technical Sciences, 57 (3), 48–56. doi: https://doi.org/10.2478/lpts-2020-0015 Search in Google Scholar

Ansone, A., Jansons, L., Bode, I., Dzelzitis, E., Zemite, L., & Broks, A. (2022). Study on Potential Role and Benefits of Liquified Natural Gas Import Terminal in Latvia. Latvian Journal of Physics and Technical Sciences, 59 (2), 37–54. doi: https://doi.org/10.2478/lpts-2022-0010 Search in Google Scholar

Elering. (n.d.). Baltic TSOs, Baltic Balancing Roadmap. Available at https://elering.ee/sites/default/files/2022-10/Balticbalancing roadmap 10.2022.pdf Search in Google Scholar

Baltic Transparency Dashboard. (n.d.). Current Balancing State. Available at https://baltic.transparency-dashboard.eu/ Search in Google Scholar

Latvenergo. (n.d.). The Development of Wind Farms is a Cooperation Opportunity for Latvian Entrepreneurs. Available at https://latvenergo.lv/en/jaunumi/preses-relizes/relize/latvenergo-development-wind-farms-cooperation-opportunity-latvian-entrepreneurs Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics