Energy Efficiency. (2022). Why the Transition to Energy Efficient and Electrified Buildings Strengthens Europe’s Economy. Available at https://www.ien.eu/article/why-the-transition-to-energy-efficient-andelectrified-buildings-strengthens-europes-economy/Search in Google Scholar
Kundziņa, A., Geipele, I., Lapuke, S., & Auders, M. (2022). Energy Performance Aspects of Non-Residential Buildings in Latvia. Latvian Journal of Physics and Technical Sciences, 59 (6), 30–42. doi: 10.2478/lpts-2022-0045.Search in Google Scholar
Borodinecs, A., Zemitis, J., Dobelis, M., Kalinka, M., Prozuments, A., & Šteinerte, K. (2017). ModularRretrofitting Solution of Buildings Based on 3D Scanning. Procedia Eng, 205, 160–166. doi: 10.1016/j. proeng.2017.09.948.Search in Google Scholar
Zemitis, J., & Terekh, M. (2018). Management of Energy Efficient Measures by Buildings’ Thermorenovation. MATEC Web of Conferences, 245. doi: 10.1051/matecconf/201824506003.Search in Google Scholar
Pukite, I., Grekis, A., Geipele, I., & Zeltins, N. (2017). Involvement of Individuals in the Development of Technical Solutions and Rules of Management for Building Renovation Projects: A Case Study of Latvia. Latvian Journal of Physics and Technical Sciences, 54 (4), 3–14. doi: 10.1515/lpts-2017-0022.Search in Google Scholar
Borodinecs, A., Prozuments, A., Zajacs, A., & Zemitis, J. (2019). Retrofitting of Fire Stations in Cold Climate Regions. Magazine of Civil Engineering, 90 (6), 85–92. doi: 10.18720/MCE.90.8.Search in Google Scholar
Zemitis, J., Bogdanovics, R., & Bogdanovica, S. (2021). The Study of Co2 Concentration in a Classroom during the Covid-19 Safety Measures. E3S Web of Conferences, 246. doi: 10.1051/e3sconf/202124601004.Search in Google Scholar
IEA. (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. International Energy Agency.Search in Google Scholar
European Parliament and the Council of the European Union. (2018). Consolidated text: Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (recast). Official Journal of the European Union.Search in Google Scholar
Zemitis, J., Borodinecs, A., Geikins, A., Kalamees, T., & Kuusk, K. (2016). Ventilation System Design in Three European Geo Cluster. Energy Procedia, 96. doi: 10.1016/j.egypro.2016.09.151.Search in Google Scholar
European Comission. (n.d.). Nearly zero-energy buildings. Available at https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_enSearch in Google Scholar
Attia, S., Kurnitski, J., Kosiński, P., Borodiņecs, A., Deme Belafi, Z., … & Banionis, K. (2022). Overview and Future Challenges of Nearly Zero-Energy Building (nZEB) Design in Eastern Europe. Energy Build, 276. doi:10.1016/j. enbuild.2022.112165.Search in Google Scholar
Ayou, D.S., Wardhana, M.F.V., & Coronas, A. (2023). Performance Analysis of a Reversible Water/LiBr Absorption Heat Pump Connected to District Heating Network in Warm and Cold Climates. Energy, 268. doi: 10.1016/J. ENERGY.2023.126679.Search in Google Scholar
Sandvall, A., & Karlsson, K.B. (2023). Energy System and Cost Impacts of Heat Supply to Low-Energy Buildings in Sweden. Energy, 268. doi: 10.1016/J. ENERGY.2023.126743.Search in Google Scholar
Lu, Z., & Ziviani, D. (2022). Operating Cost Comparison of State-of-the-Art Heat Pumps in Residential Buildings across the United States. Energy Build, 277. doi: 10.1016/J.ENBUILD.2022.112553.Search in Google Scholar
Sadeghi, H., Ijaz, A., & Singh, R.M. (2022). Current Status of Heat Pumps in Norway and Analysis of their Performance and Payback Time. Sustainable Energy Technologies and Assessments, 54. doi: 10.1016/J.SETA.2022.102829.Search in Google Scholar
Panasonic. (2018). New Aquarea Range 2017–2018. High-Efficiency Heat Pump Technology. Available at https://www.aircon.panasonic.eu/uploads/TR/clima_catalogues/EU%20AQUAREA%2028P%2017%20LR.pdfSearch in Google Scholar
Milanowski, M., Cazorla-Marín, A., & Montagud-Montalvá, C. (2022). Energy Analysis and Cost-Effective Design Solutions for a Dual-Source Heat Pump System in Representative Climates in Europe. Energies (Basel), 15 (22), p. 8460. doi: 10.3390/EN15228460.Search in Google Scholar
Ministru kabinets. (2021). Ēku energoefektivitātes aprēķina metodes un ēku energosertifikācijas noteikumi. Latvijas Vēstnesis 2021/72.4.Search in Google Scholar
Marijanovic, Z., Theile, P., & Czock, B.H. (2022). Value of Short-Term Heating System Flexibility – A Case Study for Residential Heat Pumps on the German Intraday Market. Energy, 249, 123664. doi: 10.1016/J.ENERGY.2022.123664.Search in Google Scholar
Nageler, P., Schweiger, G., Pichler, M., Brandl, D., Mach, T., Heimrath, R., … & Hochenauer, C. (2018). Validation of Dynamic Building Energy Simulation Tools Based on a Real Test-Box with Thermally Activated Building Systems (TABS). Energy Build, 168, 42–55. doi: 10.1016/J. ENBUILD.2018.03.025.Search in Google Scholar
Ferrantelli, A., Fadejev, J., & Kurnitski, J. (2019). Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions. Energies (Basel), 12 (5). doi: 10.3390/en12050770.Search in Google Scholar
Englund, J. S., Cehlin, M., Akander, J., & Moshfegh, B. (2020). Measured and Simulated Energy Use in a Secondary School Building in Sweden - A Case Study of Validation, Airing, and Occupancy Behaviour. Energies (Basel), 13 (9). doi: 10.3390/EN13092325.Search in Google Scholar
Taebnia, M., Toomla, S., Leppä, L., & Kurnitski, J. (2020). Developing Energy Calculation Methodology and Calculation Tool Validations: Application in Air-Heated Ice Rink Arenas. Energy Build, 226. doi: 10.1016/J.ENBUILD.2020.110389.Search in Google Scholar
Catto Lucchino, E., Gelesz, A., Skeie, K., Gennaro, G., Reith, A., Serra, V., & Goia, F. (2021). Modelling double skin façades (DSFs) in Whole-Building Energy Simulation Tools: Validation and Inter-Software Comparison of a Mechanically Ventilated Single-Story DSF. Build Environ., 199. doi: 10.1016/J. BUILDENV.2021.107906.Search in Google Scholar
Mathes, R., Junker, H., Wunsch, M., Hemmatabady, H., Kabus, F., & Tilsen, R. (2022). Geothermal Heating Plant Schwerin: Realization of a Cascaded Large-Scale Heat Pump System for the Utilization of a Medium-Depth Geothermal System, European Geothermal Congress 2022, Berlin, Germany | 17-21 October 2022, pp. 1–6.Search in Google Scholar
Zirngibl, J. (2020). Heat Pump Standard EN 15316-4-2 – From Compliance to Real Consumption. REHVA Journal: 06/2020 5–9. https://www.rehva.eu/rehva-journal/chapter/heat-pump-standard-en-15316-4-2-from-compliance-to-real-consumption-1Search in Google Scholar