À propos de cet article

Citez

1. UN. (2020). Long-Term Low Greenhouse Gas Emission Development Strategy of the European Union and its Member States. Available at https://unfccc.int/documents/210328 Search in Google Scholar

2. IEA. (2019). The Future of Hydrogen. Available at https://www.iea.org/reports/the-future-of-hydrogen Search in Google Scholar

3. IEA. (2021). Global Hydrogen Review 2021. Available at https://www.iea.org/reports/global-hydrogen-review-2021/executive-summary Search in Google Scholar

4. Jansons, L., Bode, I., Zemite, L., Zeltins, N., Geipele, I., & Kiesners, K. (2022). Securing Sustainable Energy Future: Green Hydrogen as a Part of Gaseous Fuel Diversification Risk Management Strategy. Latvian Journal of Physics and Technical Sciences, 59 (4), 53–70. DOI: 10.2478/lpts-2022-003310.2478/lpts-2022-0033 Search in Google Scholar

5. IEA. (2022). Electrolysers. Technology Deep Dive. Available at https://www.iea.org/reports/electrolysers Search in Google Scholar

6. Power Technology. (2022). Global Electro-lyzer Capacity to Reach 8.52GW by 2026. Available at https://www.power-technology.com/comment/global-electrolyzer-capacity/ Search in Google Scholar

7. Energy Transitions Commission. (2021). Making the Hydrogen Economy Possible: Accelerating Clean Hydrogen in an Electrified Economy. Available at https://www.energy-transitions.org/wp-content/uploads/2021/04/ETC-Global-Hydrogen-Report.pdf Search in Google Scholar

8. Statista. (2021). Number of Hydrogen Projects Announced Worldwide as of 2021, by Region. Available at https://www.statista.com/statistics/1220805/global-hydrogen-projects-by-region/ Search in Google Scholar

9. Nnabuife, S.G., Ugbeh-Johnson, J., Evaristus Okeke, N., & Ogbonnaya, C. (2022). Present and Projected Developments in Hydrogen Production: A Technological Review. Carbon Capture Science & Technology, 3. https://doi.org/10.1016/j.ccst.2022.10004210.1016/j.ccst.2022.100042 Search in Google Scholar

10. PWC. (n.d.). The Green Hydrogen Economy. Predicting the Decarbonisation Agenda of Tomorrow. Available at https://www.pwc.com/gx/en/industries/energy-utilities-resources/future-energy/green-hydrogen-cost.html Search in Google Scholar

11. Jansons, L., Zeltins, N., Geipele, I., & Zemite, L. (2022). Gaseous Fuel Diversification in Residential Sector: Analysis of Potential Risks. Scientific Problems of Engineering Economics of Construction and Real Estate Management, Regional and Territorial Development (Section in the Annual 63rd International Scientific Conference of Riga Technical University), 29–30 September 2022. ISSN: 2592-9372. Search in Google Scholar

12. Jansons, L., Geipele, I., Zemite, L., & Zeltins, N. (2022). Large-Scale Hydrogen Underground Storages and Associated Risk Factors. Scientific Problems of Engineering Economics of Construction and Real Estate Management, Regional and Territorial Development (Section in the Annual 63rd International Scientific Conference of Riga Technical University), 29–30 September 2022. ISSN: 2592-9372 Search in Google Scholar

13. EC. (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Hydrogen Strategy for a Climate-Neutral Europe. Available at https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301 Search in Google Scholar

14. EC. (n.d.). National Energy and Climate Plans. EU Countries’ 10-Year National Energy and Climate Plans for 2021–2030. Available at https://ec.europa.eu/info/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-energy-and-climate-plans_en#final-necps Search in Google Scholar

15. IEA. (2022). Hydrogen. Energy System Overview. Available at https://www.iea.org/reports/hydrogen Search in Google Scholar

16. Hydrogen Europe. (2020). Strategy: Hydrogen Europe’s Top 10 Key Recommendations. Available at https://hydrogeneurope.eu/wp-content/uploads/2021/11/The-EU-Hydrogen-Strategy_-Hydrogen-Europestop-10-key-recommendations_FINAL.pdf Search in Google Scholar

17. Vlaanderen. (n.d.). Fuel Cells and Hydrogen 2 Joint Undertaking – (other organisations). Available at https://eufundingoverview.be/funding/fuel-cells-and-hydrogen-2-joint-undertaking-other-organisations Search in Google Scholar

18. USEF. (2016). An Introduction to the Universal Smart Energy Framework. Available at https://www.usef.energy/app/uploads/2016/12/An-introduction-to-the-Universal-Smart-Energy-Framework-2.pdf Search in Google Scholar

19. Mathiesen, B.V., Lund, H., Connolly, D., Østergaard, P. A., & Mölle, B. (2015). The Design of Smart Energy Systems for 100% Renewable Energy and Transport Solutions. DOI: 10.1016/j.apenergy.2015.01.075.10.1016/j.apenergy.2015.01.075 Search in Google Scholar

20. Savickis, J., Zemite, L., Jansons, L., Bode, I., Dzelzitis, E., Broks, A., & Vempere, L. (2020). The Development of the Smart Gas Distribution: General Trends and the Latvian Context. Latvian Journal of Physics and Technical Sciences, 57 (6), 23–39. DOI: 10.2478/lpts-2020-003110.2478/lpts-2020-0031 Search in Google Scholar

21. Skov, I.R. (2015). Integrated Electrofuels and Renewable Energy Systems. PhD Thesis. Aalborg University. DOI: 10.13140/RG.2.1.4318.5682. Search in Google Scholar

22. Fehrenbacher, K. (2009). Why the Smart Grid Won’t Have the Innovations of the Internet Any Time Soon. Available at https://archive.nytimes.com/www.nytimes.com/external/gigaom/2009/06/05/05gigaom-why-the-smart-grid-wont-have-the-innovations-of-t-92813.html Search in Google Scholar

23. Savickis, J., Zeltiņš, N., & Jansons, L. (2019). Synergy Between the Natural Gas and RES in Enhancement of Security of Energy Supply in the Baltic Countries (Problem Statement). Latvian Journal of Physics and Technical Sciences, 56 (6), 17–31. DOI: 10.2478/lpts-2019-003210.2478/lpts-2019-0032 Search in Google Scholar

24. Savickis, J., Zemite, L., Zeltins, N., Bode, I., Jansons, L., Dzelzitis, E., … & Ansone, A. (2020). The Biomethane Injection into the Natural Gas Networks: The EU’s Gas Synergy Path. Latvian Journal of Physics and Technical Sciences, 57 (4), 34–50. DOI: 10.2478/lpts-2020-002010.2478/lpts-2020-0020 Search in Google Scholar

25. Kurmayer, N.J. (2023). Germany to Almost Double Gas Firing Capacity. Available at https://www.euractiv.com/section/energy/news/germany-to-almost-double-gas-firing-capacity/ Search in Google Scholar

26. ACER. (n.d.). Gas Factsheet. Available at https://www.acer.europa.eu/gas-factsheet Search in Google Scholar

27. Wang, A., van der Leun, K., Peters, D., & Buseman, M. (2020). European Hydrogen Backbone. How a Dedicated Hydrogen Infrastructure Can Be Created. Available at https://gasforclimate2050.eu/wp-content/uploads/2020/07/2020_European-Hydrogen-Backbone_Report.pdf Search in Google Scholar

28. Pekic, S. (2021). DNV Studies Hydrogen to Support Ready4H2 Roadmap. Available at https://www.offshore-energy.biz/dnv-studies-hydrogen-to-support-ready4h2-roadmap/ Search in Google Scholar

29. EHB. (n.d.). The European Hydrogen Backbone (EHB) Initiative. Available at https://ehb.eu/ Search in Google Scholar

30. Zemite, L., Bode, I., Vempere, L., Jasevics, A., Jansons, L., & Kleperis, J. (2022). Biogas Production Support Systems for the Production and Use of Biomethane. Proceeding of the 22nd International Conference on Environmental and Electrical Engineering (EEEIC2022), 21 December 2021. DOI: 10.1109/EEEIC/ICPSEurope54979.2022.9854710.1109/EEEIC/ICPSEurope54979.2022.9854739 Search in Google Scholar

31. Amicucci, L. (2020). Cellular IoT Smart Meter Boosts Hydrogen Energy Sector. Available at https://blog.nordicsemi.com/getconnected/cellular-iot-smart-meter-boosts-hydrogen-energy-sector Search in Google Scholar

32. Jansons, L., Bode, I., Zemite, L., Zeltins, N., Geipele, I., Kiesners, K. (2022). Securing Sustainable Energy Future: Green Hydrogen as a Part of Gaseous Fuel Diversification Risk Management Strategy. Latvian Journal of Physics and Technical Sciences, 59 (4), 53–70. DOI: 10.2478/lpts-2022-003310.2478/lpts-2022-0033 Search in Google Scholar

33. Fiorentini, P. (n.d.). Residental Metering. H2 SSM. Available at https://static1.squarespace.com/static/5b8eae345cfd799896a803f4/t/6231afa5a4627b0ff7abb563/1647423398301/h2ssm_flyer_ENG_revA.pdf Search in Google Scholar

34. MeterTech. (n.d.). What we do. Bespoke Solutions for your Metering Needs. Available at https://metertech.co.uk/what-we-do Search in Google Scholar

35. Jaribion, A., Khajavi, S., Ohman, M., Knapen, A., & Holmstrom, J. (2020). A digital twin for safety and risk management: A prototype for a hydrogen high-pressure vessel. In 15th International Conference on Design Science Research in Information Systems and Technology, (pp. 369–375), 2–4 December 2020. Kristiansand, Norway. doi: 10.1007/978-3-030-64823-7_3410.1007/978-3-030-64823-7_34 Search in Google Scholar

36. Savickis, J., Zemite, L., Jansons, L., Bode, I., Dzelzitis, E., Broks, A., Vempere, L. (2020). The Development of the Smart Gas Distribution: General Trends and the Latvian Context. Latvian Journal of Physics and Technical Sciences, 57 (6), 23–39. DOI: 10.2478/lpts-2020-003110.2478/lpts-2020-0031 Search in Google Scholar

37. ADBA. (2021). Biomethane & Hydrogen. Two Green Gases, One Future. Biogas Insights. Available at https://www.greengastrading.co.uk/wp-content/uploads/2021/07/ADBA-Hydrogen-andbiomethane-Decarbonising-gas.pdf Search in Google Scholar

38. PwC. (2020). The Dawn of Green Hydrogen. Maintaining the GCC’s Edge in a Decarbonized World. Available at https://www.strategyand.pwc.com/m1/en/reports/2020/the-dawn-of-green-hydrogen/the-dawn-of-green-hydrogen.pdf Search in Google Scholar

39. Bolobov, V.I., Latipov, I.U., Popov, G.G., Buslaev, G.V., & Martynenko, Y.V. (2021). Estimation of the Influence of Compressed Hydrogen on the Mechanical Properties of Pipeline Steels. Energies, 14.10.3390/en14196085 Search in Google Scholar

40. Mitsubishi Power. (n.d.). MHPS Successfully Tests Large-Scale High-Efficiency Gas Turbine Fuelled by 30 % Hydrogen Mix. Available at https://power.mhi.com/news/20180119.html Search in Google Scholar

41. Air Products. (2012). Air Products’ U.S. Gulf Coast Hydrogen Network Enhanced Reliability from the World’s Largest Hydrogen Pipeline. Available at https://microsites.airproducts.com/h2-pipeline/pdf/air-products-us-gulf-coast-hydrogen-network-datasheet.pdf Search in Google Scholar

42. UNECE. (2021). Technology Brief. Hydrogen. Available at https://unece.org/sites/default/files/2021-10/Hydrogen%20brief_EN_final_0.pdf Search in Google Scholar

43. Re-Stream. (2021). Study on the Reuse of Oil and Gas Infrastructure for Hydrogen and CCS in Europe. Available at https://www.concawe.eu/wp-content/uploads/Re-stream-final-report_Oct2021.pdf Search in Google Scholar

44. UNECE. (2020). Report of the Group of Experts on Gas. Available at https://unece.org/sed/documents/2022/04/reports/report-group-experts-gas Search in Google Scholar

45. ENTSOG. (2021). ENTSOG Summary of Proposals for Addressing Hydrogen Regulation in the Revision of the 3rd Energy Gas Package. Available at https://www.entsog.eu/sites/default/files/2021-06/202106%20-%20Position%20-%20ENTSOG%20-%20Open%20PC%20Hydrogen%20Gas%20Market%20Decarbonisation%20Package.pdf Search in Google Scholar

46. Kleperis, J., Boss, D., Mezulis, A., Zemite, L., Lesnicenoks, P., Knoks, A. & Dimanta, I. (2021). Analysis of the Role of the Latvian Natural Gas Network for the Use of Future Energy Systems: Hydrogen from RES. Latvian Journal of Physics and Technical Sciences, 58 (3), 214–226. doi: 10.2478/lpts-2021-002710.2478/lpts-2021-0027 Search in Google Scholar

47. FCHO. (2020). Opportunities for Hydrogen Energy Technologies Considering the National Energy & Climate Plans. Available at https://www.fchobservatory.eu/news-events/new-study-released-opportunities-hydrogen-energy-technologies-considering-national Search in Google Scholar

48. Stepiņa, K. (2022). Arī Latvijā ir iespējas ražot ūdeņradi no atjaunojamajiem resursiem. Available at https://www.retv.lv/raksts/ari-latvija-ir-iespejas-razot-udenradino-atjaunojamajiem-resursiem Search in Google Scholar

49. Elektrum. (2022). Elektroenerģijas tirgus apskats. Available at https://latvenergo.lv/storage/app/media/uploaded-files/ETA_jan_2022.pdf Search in Google Scholar

50. Zemite, L., Kobzars, V., & Jansons, L. (2022). Water Energy – for the Production of Hydrogen? Low Power HES and Their Perspective. Enerģija un Pasaule, 1, 34–39. Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics