À propos de cet article

Citez

1. Peschel, A. (2020). Industrial Perspective on Hydrogen Purification, Compression, Storage, and Distribution. Fuel cells, 20 (4), 385–393.10.1002/fuce.201900235 Search in Google Scholar

2. Fragiacomo, P., & Genovese, M. (2020). Developing a Mathematical Tool for Hydrogen Production, Compression and Storage. International Journal of Hydrogen Energy, 45 (35), 17685–17701.10.1016/j.ijhydene.2020.04.269 Search in Google Scholar

3. European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. (2020). A Hydrogen Strategy for a Climate-Neutral Europe. Brussels, 8.7.2020. COM (2020) 301 final. Search in Google Scholar

4. Grib, N. (2019). Hydrogen Energy: Myths and Reality. Oil and Gas Vertical (in Russian), 19. 61–69. Available at http://www.ngv.ru/magazines/article/vodorodnaya-energetikamify-i-realnost/ Search in Google Scholar

5. IEA. (2021). Global Hydrogen Review 2021, IEA, Paris. Available at https://www.iea.org/reports/global-hydrogen-review-2021 Search in Google Scholar

6. Yu, M., Wang, K., & Vredenburg, H. (2021). Insights into Low-Carbon Hydrogen Production Methods: Green, Blue and Aqua Hydrogen. International Journal of Hydrogen Energy, 46 (41), 21261–21273.10.1016/j.ijhydene.2021.04.016 Search in Google Scholar

7. Sdanghi, G., Maranzana, G., Celzard, A., & Fierro, V. (2019). Review of the Current Technologies and Performances of Hydrogen Compression for Stationary and Automotive Applications. Renewable and Sustainable Energy Reviews, 102, 150–170.10.1016/j.rser.2018.11.028 Search in Google Scholar

8. IEA. (2020). Global Installed Electrolysis Capacity by Region, 2015–2020, IEA, Paris. Available at https://www.iea.org/data-and-statistics/charts/global-installed-electrolysis-capacity-by-region-2015-2020 Search in Google Scholar

9. Ross, D.K. (2006). Hydrogen Storage: The Major Technological Barrier to the Development of Hydrogen Fuel Cell Cars. Vacuum, 80 (10), 1084–1089.10.1016/j.vacuum.2006.03.030 Search in Google Scholar

10. H2 Tools. (n.d.). Hydrogen Compressibility at Different Temperatures and Pressures. Pacific Northwest National Laboratory. Available at https://h2tools.org/hyarc/hydrogen-data/hydrogen-compressibility-different-temperatures-and-pressures Search in Google Scholar

11. Davies, K. L., & Moore, R.M. (2006). UUV FCEPS Technology Assessment and Design Process. University of Hawaii. Search in Google Scholar

12. HyResponder Consortium. (n.d.). Hydrogen Refuelling Stations & Infrastructure. Available at https://hyresponder.eu/wp-content/uploads/2021/06/L12_HyResponder_L4_210622.pdf Search in Google Scholar

13. Pique, S., Weinberger, B., De-Dianous, V., & Debray, B. (2017). Comparative Study of Regulations, Codes and Standards and Practices on Hydrogen Fuelling Stations. International Journal of Hydrogen Energy, 42 (11), 7429–7439.10.1016/j.ijhydene.2016.02.158 Search in Google Scholar

14. Mair, G.W., Thomas, S., Schalau, B., & Wang, B. (2021). Safety Criteria for the Transport of Hydrogen in Permanently Mounted Composite Pressure Vessels. International Journal of Hydrogen Energy, 46 (23), 2577–12593.10.1016/j.ijhydene.2020.07.268 Search in Google Scholar

15. US Department of Energy. (2013). Hydrogen Delivery Technical Team Roadmap. Office of Energy Efficiency and Renewable Energy. Available at https://energy.gov/sites/prod/files/2014/03/f12/hdtt_roadmap_june2013.pdf Search in Google Scholar

16. Zou, J., Han, N., Yan, J., Feng, Q., Wang, Y., Zhao, Z., … & Wang, H. (2020). Electrochemical Compression Technologies for High-Pressure Hydrogen: Current Status, Challenges and Perspective. Electrochem. Energ. Rev., 3, 690–729.10.1007/s41918-020-00077-0 Search in Google Scholar

17. Humphrey, H.A. (1909). An Internal-Combustion Pump and Other Applications of a New Principle. Proc. Inst. Mech. Eng., 1123.10.1243/PIME_PROC_1909_077_019_02 Search in Google Scholar

18. Joyce, N.G. (1984). The Humphrey pump – An internal combustion pump. In: Proceedings of the Conference on Small Engines and Their Fuels in Developing Countries (pp. 31–44), Reading, Berkshire, England. Search in Google Scholar

19. Van de Ven, J. D., & Li, P.J. (2009). Liquid Piston Gas Compression. Applied Energy, 86 (10), 2183–2191. doi:10.1016/j.apenergy.2008.12.001 Open DOISearch in Google Scholar

20. Bezrukovs, V., Bezrukovs, Vl., Bezrukovs, D., Orlova, S., Konuhova, M., Berzins, A., … & Pranskus, P. (2021). Hydrogen Hydraulic Compression Device. PCT/IB2021/058102. Application date 13 August 2021. Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics