À propos de cet article

Citez

1. Krasovska, M., Gerbreders, V., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., & Sarajevs, P. (2018). ZnO-Nanostructure-Based Electrochemical Sensor: Effect of Nanostructure Morphology on the Sensing of Heavy Metal Ions. Beilstein Journal of Nanotechnology, 9, 2421–2431. DOI:10.3762/bjnano.9.227.10.3762/bjnano.9.227614272730254837 Search in Google Scholar

2. Tereshchenko, A., Bechelany, M., Viter, R., Khranovskyy, V., Smyntyna, V., Starodub, N., & Yakimova, R. (2016). Optical Biosensors Based on ZnO Nanostructures: Advantages and Perspectives. A Review. Sensors and Actuators B: Chemical, 229, 664–677. DOI:10.1016/j.snb.2016.01.099.10.1016/j.snb.2016.01.099 Search in Google Scholar

3. Zaidi, S. A., & Shin, J. H. (2016). Recent Developments in Nanostructure Based Electrochemical Glucose Sensors. Talanta, 149, 30–42. DOI:10.1016/j. talanta.2015.11.033.10.1016/j.talanta.2015.11.033 Search in Google Scholar

4. Arya, S. K., Saha, S., Ramirez-Vick, J. E., Gupta, V., Bhansali, S., & Singh, S. P. (2012). Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications: Review. Analytica Chimica Acta, 737, 1–21. DOI:10.1016/j.aca.2012.05.048.10.1016/j.aca.2012.05.04822769031 Search in Google Scholar

5. Mihailova, I., Gerbreders, V., Tamanis, E., Sledevskis, E., Viter, R., & Sarajevs, P. (2013). Synthesis of ZnO Nanoneedles by Thermal Oxidation of Zn Thin Films. Journal of Non-Crystalline Solids, 377, 212–216. DOI:10.1016/j.jnoncrysol.2013.05.003.10.1016/j.jnoncrysol.2013.05.003 Search in Google Scholar

6. Mihailova, I., Gerbreders, V., Bulanovs, A., Tamanis, E., Sledevskis, E., Ogurcovs, A., & Sarajevs, P. (2014). Controlled growth of well-aligned ZnO nanorod arrays by hydrothermal method. In: Eighth International Conference on Advanced Optical Materials and Devices, (pp. 1–8), 25–27 August 2014, 9421, 94210A. Riga, Latvia: SPIE. DOI:10.1117/12.2083960.10.1117/12.2083960 Search in Google Scholar

7. Alvi, N. H., Hassan, W. ul, Farooq, B., Nur, O., & Willander, M. (2013). Influence of Different Growth Environments on the Luminescence Properties of ZnO Nanorods Grown by the Vapor–Liquid–Solid (VLS) Method. Materials Letters, 106, 158–16. DOI:10.1016/j.matlet.2013.04.074.10.1016/j.matlet.2013.04.074 Search in Google Scholar

8. Abbas, K. N., Bidin, N., Sabry, R. S., Al-Asedy, H. J., Al-Azawi, M. A., & Islam, S. (2016). Structures and Emission Features of High-Density ZnO Micro/Nanostructure Grown by an Easy Hydrothermal Method. Materials Chemistry and Physics, 182, 298–307.DOI:10.1016/j. matchemphys.2016.07.035.10.1016/j.matchemphys.2016.07.035 Search in Google Scholar

9. Baruah, S., & Dutta, J. (2009). Hydrothermal Growth of ZnO Nanostructures. Science and Technology of Advanced Materials, 10 (1), 013001. DOI:10.1088/1468-6996/10/1/013001.10.1088/1468-6996/10/1/013001510959727877250 Search in Google Scholar

10. Katz, E., & Willner, I. (2003). Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanalysis, 15 (11), 913–947. DOI:10.1002/elan.200390114.10.1002/elan.200390114 Search in Google Scholar

11. Lin, D., Tang, T., Jed Harrison, D., Lee, W. E., & Jemere, A. B. (2015). A Regenerating Ultrasensitive Electrochemical Impedance Immunosensor for the Detection of Adenovirus. Biosensors and Bioelectronics, 68, 129–134. DOI:10.1016/j. bios.2014.12.032.10.1016/j.bios.2014.12.032 Search in Google Scholar

12. Kafka, J., Pänke, O., Abendroth, B., & Lisdat, F. (2008). A Label-Free DNA Sensor Based on Impedance Spectroscopy. Electrochimica Acta, 53 (25), 7467–7474. DOI:10.1016/j.electacta.2008.01.031.10.1016/j.electacta.2008.01.031 Search in Google Scholar

13. Ni, Y., Xu, J., Liang, Q., & Shao, S. (2017). Enzyme-Free Glucose Sensor Based on Heteroatom-Enriched Activated Carbon (HAC) Decorated with Hedgehog-Like NiO Nanostructures. Sensors and Actuators B: Chemical, 250, 491–498. DOI:10.1016/j. snb.2017.05.004.10.1016/j.snb.2017.05.004 Search in Google Scholar

14. Sanguino, P., Monteiro, T., Bhattacharyya, S. R., Dias, C. J., Igreja, R., & Franco, R. (2014). ZnO Nanorods as Immobilization Layers for Interdigitated Capacitive Immunosensors. Sensors and Actuators B: Chemical, 204, 211–217. doi:10.1016/j.snb.2014.06.141.10.1016/j.snb.2014.06.141 Search in Google Scholar

15. Jacobs, M., Muthukumar, S., Munje, R., Quadri, B., & Prasad, S. (2014). Analysis of nanotextured ZnO surfaces for biosensing applications. In: 14th IEEE International Conference on Nanotechnology, (pp. 515–520), 18–21 August 2014. Toronto, Canada: IEEE. DOI:10.1109/nano.2014.6968149.10.1109/NANO.2014.6968149 Search in Google Scholar

16. Raymand, D., van Duin, A. C. T., Spångberg, D., Goddard, W. A., & Hermansson, K. (2010). Water Adsorption on Stepped ZnO Surfaces from MD Simulation. Surface Science, 604 (9–10), 741–752. DOI:10.1016/j.susc.2009.12.012.10.1016/j.susc.2009.12.012 Search in Google Scholar

17. Hamid, S. B. A., Teh, S. J., & Lai, C. W. (2017). Photocatalytic Water Oxidation on ZnO: A Review. Catalysts, 7 (12), 93. DOI:10.3390/catal7030093.10.3390/catal7030093 Search in Google Scholar

18. Bhavsar, K., Ross, D., Prabhu, R., & Pollard, P. (2015). LED-Controlled Tuning of ZnO Nanowires’ Wettability for Biosensing Applications. Nano Reviews, 6 (1), 26711. DOI:10.3402/nano.v6.26711.10.3402/nano.v6.26711439056325855065 Search in Google Scholar

19. Khranovskyy, V., Ekblad, T., Yakimova, R., & Hultman, L. (2012). Surface Morphology Effects on the Light-Controlled Wettability of ZnO Nanostructures. Applied Surface Science, 258 (20), 8146–8152. DOI:10.1016/j.apsusc.2012.05.011.10.1016/j.apsusc.2012.05.011 Search in Google Scholar

20. Ejeian, F., Etedali, P., Mansouri-Tehrani, H.-A., Soozanipour, A., Low, Z.-X., Asadnia, M., …. & Razmjou, A. (2018). Biosensors for Wastewater Monitoring: A Review. Biosensors and Bioelectronics, 118, 66–79. DOI:10.1016/j.bios.2018.07.019.10.1016/j.bios.2018.07.01930056302 Search in Google Scholar

21. Duta, L., Popescu, A. C., Zgura, I., Preda, N., & Mihailescu, I. N. (2015). Wettability of Nanostructured Surfaces. Wetting and Wettability, Intech Open, 207–252. DOI:10.5772/60808.10.5772/60808 Search in Google Scholar

22. Krasovska, M., Gerbreders, V., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal Synthesis of ZnO Nanostructures with Controllable Morphology Change. CrystEngComm., 28 (8), 1346–1358. DOI:10.1039/c9ce01556f.10.1039/C9CE01556F Search in Google Scholar

23. Krasovska, M., Gerbreders, V., Paskevics, V., Ogurcovs, A., & Mihailova, I. (2015). Obtaining a Well-Aligned ZnO Nanotube Array Using the Hydrothermal Growth Method. Latvian Journal of Physics and Technical Sciences, 52 (5), 28–40. DOI:10.1515/lpts-2015-0026.10.1515/lpts-2015-0026 Search in Google Scholar

24. Gerbreders, V., Krasovska, M., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., … & Plaksenkova, I. (2019). ZnO Nanostructure-Based Electrochemical Biosensor for Trichinella DNA Detection. Sensing and Bio-Sensing Research, 100276. DOI:10.1016/j.sbsr.2019.100276.10.1016/j.sbsr.2019.100276 Search in Google Scholar

25. Chae, K.-W., Zhang, Q., Kim, J. S., Jeong, Y.-H., & Cao, G. (2010). Low-Temperature Solution Growth of ZnO Nanotube Arrays. Beilstein Journal of Nanotechnology, 1, 128–134. DOI:10.3762/bjnano.1.15.10.3762/bjnano.1.15304591421977402 Search in Google Scholar

26. Roza, L., Rahman, M. Y. A., Umar, A. A., & Salleh, M. M. (2015). Direct Growth of Oriented ZnO Nanotubes by Self-Selective Etching at Lower Temperature for Photo-Electrochemical (PEC) Solar Cell Application. Journal of Alloys and Compounds, 618, 153–158. DOI:10.1016/j.jallcom.2014.08.113.10.1016/j.jallcom.2014.08.113 Search in Google Scholar

27. Wang, H., Li, G., Jia, L., Wang, G., & Tang, C. (2008). Controllable Preferential-Etching Synthesis and Photocatalytic Activity of Porous ZnO Nanotubes. The Journal of Physical Chemistry C, 112(31), 11738–11743. DOI:10.1021/jp803059k.10.1021/jp803059k Search in Google Scholar

28. Myint, M. T. Z., Kumar, N. S., Hornyak, G. L., & Dutta, J. (2013). Hydrophobic/ Hydrophilic Switching on Zinc Oxide Micro-Textured Surface. Applied Surface Science, 264, 344–348. DOI:10.1016/j. apsusc.2012.10.024.10.1016/j.apsusc.2012.10.024 Search in Google Scholar

29. Patel, K. H., & Rawal, S. K. (2016). Exploration of Wettability and Optical Aspects of ZnO Nano Thin Films Synthesized by Radio Frequency Magnetron Sputtering. Nanomaterials and Nanotechnology, 6, 22. DOI:10.5772/62804.10.5772/62804 Search in Google Scholar

30. Han, J., & Gao, W. (2008). Surface Wettability of Nanostructured Zinc Oxide Films. Journal of Electronic Materials, 38 (4), 601–608. DOI:10.1007/s11664-008-0615-0.10.1007/s11664-008-0615-0 Search in Google Scholar

31. Shaban, M., Zayed, M., & Hamdy, H. (2017). Nanostructured ZnO Thin Films for Self-Cleaning Applications. RSC Advances, 7 (2), 617–631. DOI:10.1039/c6ra24788a.10.1039/C6RA24788A Search in Google Scholar

32. Lin, L.-Y., Kim, H.-J., & Kim, D.-E. (2008). Wetting Characteristics of ZnO Smooth Film and Nanowire Structure with and without OTS Coating. Applied Surface Science, 254 (22), 7370–7376. DOI:10.1016/j. apsusc.2008.05.337.10.1016/j.apsusc.2008.05.337 Search in Google Scholar

33. Subedi, D. P., Madhup, D. K., Sharma, A., Joshi, U. M., & Huczko, A. (2012). Retracted: Study of the Wettability of ZnO Nanofilms. International Nano Letters, 2 (1), 117–122. DOI:10.1186/2228-5326-2-1.10.1186/2228-5326-2-1 Search in Google Scholar

34. Mao-Gang, G., Xiao-Liang, X., Zhou, Y., Yan-Song, L., & Ling, L. (2010). Superhydrophobic Surfaces via Controlling the Morphology of ZnO Micro/Nano Complex Structure. Chinese Physics B, 19 (5), 056701. DOI:10.1088/1674-1056/19/5/056701.10.1088/1674-1056/19/5/056701 Search in Google Scholar

35. Yang, P., Wang, K., Liang, Z., Mai, W., Wang, C., Xie, W., … & Song, J. (2012). Enhanced Wettability Performance of Ultrathin ZnO Nanotubes by Coupling Morphology and Size Effects. Nanoscale, 4 (18), 5755. DOI:10.1039/c2nr31380d.10.1039/c2nr31380d22895660 Search in Google Scholar

36. Suresh Kumar, P., Sundaramurthy, J., Mangalaraj, D., Nataraj, D., Rajarathnam, D., & Srinivasan, M. P. (2011). Enhanced Super-Hydrophobic and Switching Behavior of ZnO Nanostructured Surfaces Prepared by Simple Solution – Immersion Successive Ionic Layer Adsorption and Reaction Process. Journal of Colloid and Interface Science, 363 (1), 51–58. DOI:10.1016/j. jcis.2011.07.015.10.1016/j.jcis.2011.07.015 Search in Google Scholar

37. Piech, M., Sounart, T. L., & Liu, J. (2008). Influence of Surface Morphology on the Wettability of Microstructured ZnO-Based Surfaces. The Journal of Physical Chemistry C, 112 (51), 20398–20405. DOI:10.1021/jp804815x.10.1021/jp804815x Search in Google Scholar

38. Zhou, X., Guo, X., Ding, W., & Chen, Y. (2008). Superhydrophobic or Superhydrophilic Surfaces Regulated by Micro-Nano Structured ZnO Powders. Applied Surface Science, 255 (5), 3371–3374. DOI:10.1016/j.apsusc.2008.09.080.10.1016/j.apsusc.2008.09.080 Search in Google Scholar

39. Ennaceri, H., Wang, L., Erfurt, D., Riedel, W., Mangalgiri, G., Khaldoun, A., … & Ennaoui, A. (2016). Water-Resistant Surfaces Using Zinc Oxide Structured Nanorod Arrays with Switchable Wetting Property. Surface and Coatings Technology, 299, 169–176. DOI:10.1016/j.surfcoat.2016.04.056.10.1016/j.surfcoat.2016.04.056 Search in Google Scholar

40. Singh, A., & Singh, S. (2018). ZnO Nanowire-Coated Hydrophobic Surfaces for Various Biomedical Applications. Bulletin of Materials Science, 41(4). DOI:10.1007/s12034-018-1611-5.10.1007/s12034-018-1611-5 Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics