Accès libre

Damage Detection of the Rod in the Crossflow Using Surrogate-Based Modelling

 et    | 08 oct. 2021
À propos de cet article

Citez

1. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: Process and product optimization using designed experiments. New York: John Wiley & Sons. Search in Google Scholar

2. Khaledi, K., Miro, S., Konig, M., & Schanz, T. (2014). Robust and Reliable Metamodels for Mechanized Tunnel Simulations. Computers and Geotechnics, 61, 1–12.10.1016/j.compgeo.2014.04.005 Search in Google Scholar

3. Forrester, A., & Keane, A. (2009). Recent Advances in Surrogate-Based Optimization. Progress in Aerospace Science, 45 (1–3), 50–79.10.1016/j.paerosci.2008.11.001 Search in Google Scholar

4. Filho, U., Antunes, A., Bastos, S., & Lyra, P. (2015). Minimization of Vortex Induced Vibrations Using Surrogate Based Optimization. Structural and Multidisciplinary Optimization, 52 (4), 717–735.10.1007/s00158-015-1264-6 Search in Google Scholar

5. Banyay, G. A., Shields, M. D., & Brigham, J. C. (2019). Efficient Global Sensitivity Analysis for Flow-Induced Vibration of a Nuclear Reactor Assembly Using Kriging Surrogates. Nuclear Engineering and Design, 341, 1–15.10.1016/j.nucengdes.2018.10.013 Search in Google Scholar

6. Banyay, G. A., Shields, M. D., & Brigham, J. C. (2020). Efficient Global Sensitivity Analysis of Structural Vibration for a Nuclear Reactor System Subject to Nonstationary Loading. Nuclear Engineering and Design, 361, 1–14.10.1016/j.nucengdes.2020.110544 Search in Google Scholar

7. Greenwood, P. E., & Nikulin, M. S. (1996). A guide to chi-squared testing. New York: John Wiley & Sons. Search in Google Scholar

8. Auzins, J. (2014). High order orthogonal designs of experiments for metamodeling, identification and optimization of mechanical systems, in Oñate, E., Oliver, J. & Huerta, A. (eds.), 11th World Congress on Computational Mechanics, 5th European Conference on Computational Mechanics, and 6th European Conference on Computational Fluid Dynamics, 3190–3201. Search in Google Scholar

9. Upnere, S., Jekabsons, N., Dementjevs, S., & Wohlmuther, M. (2020). Effects of Variable Parameters on the Behaviour of the Single Flexibly-Mounted Rod in a Closely-Packed Array. Journal of Vibroengineering, 22, 1–20.10.21595/jve.2019.20596 Search in Google Scholar

10. Roache, P. J. (1998). Verification and validation in computational science and engineering. New Mexico: Hermosa Publishers. Search in Google Scholar

11. Khan, N., Ibrahim, Z., Nguyen, L., Javed, M., & Jameel, M. (2017). Numerical Investigation of the Vortex-Induced Vibration of an Elastically Mounted Circular Cylinder at High Reynolds Number (Re=104) and Low Mass Ratio Using the RANS Code. PLoS ONE, 12 (10), 1–17.10.1371/journal.pone.0185832562889228982172 Search in Google Scholar

12. Dong, S., & Karniadakis, G. (2005). DNS of Flow Past a Stationary and Oscillating Cylinder at Re = 10000. Journal of Fluids and Structures, 20 (4), 519–531.10.1016/j.jfluidstructs.2005.02.004 Search in Google Scholar

13. Wornom, S., Ouvrard, H., Salvetti, M., Koobus, B., & Dervieux, A. (2011). Variational Multiscale Large-Eddy Simulations of the Flow past a Circular Cylinder: Reynolds Number Effects. Computers & Fluids, 47 (1), 44–50.10.1016/j.compfluid.2011.02.011 Search in Google Scholar

14. Nguyen, V.-T., & Nguyen, H. (2016). Detached Eddy Simulations of Flow Induced Vibrations of Circular Cylinders at High Reynolds Numbers. Journal of Fluids and Structures, 63, 103–119.10.1016/j.jfluidstructs.2016.02.004 Search in Google Scholar

15. Gopalkrishnan, R. (1993). Vortex-Induced Forces on Oscillating Bluff Cylinders. PhD Thesis, Massachusetts Institute of Technology. Search in Google Scholar

16. Norberg, C. (2003). Fluctuating Lift on a Circular Cylinder: Review and New Measurements. Journal of Fluids and Structures, 17 (1), 57–96.10.1016/S0889-9746(02)00099-3 Search in Google Scholar

17. Montgomery, D. (2017). Design and analysis of experiments. New York: John Wiley & Sons. Search in Google Scholar

18. Kleijnen, J. P. C. (2016). Regression and Kriging Metamodels with their Experimental Designs in Simulation: A Review. European Journal of Operational Research, 000, 1–6. Search in Google Scholar

19. Feng, X., Zhang, Y., & Wu, J. (2018). Interval Analysis Method Based on Legendre Polynomial Approximation for Uncertain Multibody Systems. Advances in Engineering Software, 121, 223–234.10.1016/j.advengsoft.2018.04.002 Search in Google Scholar

20. Meckesheimer, M., Booker, A., Barton, R., & Simpson, T. (2002). Computationally Inexpensive Metamodel Assessment Strategies. AIAA Journal, 40 (10), 2053–2060.10.2514/2.1538 Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics