À propos de cet article

Citez

1. Jennings, G. (2007). Motorized water sports, water-based tourism, sport, leisure, and recreation experiences. USA: Elsevier.10.4324/9780080468310 Search in Google Scholar

2. Bertram, V. (2000). Practical ship hydrodynamics. UK: Butterworth-Heinemann. Search in Google Scholar

3. Shariati, S. K., & Mousavizadegan, S. H. (2017). The Effect of Appendages on the Hydrodynamic Characteristics of an Underwater Vehicle near the Free Surface. Applied Ocean Research, 67, 31–43. DOI: 10.1016/j.apor.2017.07.00110.1016/j.apor.2017.07.001 Search in Google Scholar

4. Carlton, J. (2018). Marine propellers and propulsion. USA: Butterworth-Heinemann. DOI: 10.1016/B978-0-08-100366-4.00016-X10.1016/B978-0-08-100366-4.00016-X Search in Google Scholar

5. Cooper, R. D., & Doroff, S. W. (1971). Unsteady propeller forces, fundamental hydrodynamics and unconventional propulsion. Rome, Italy: Office of Naval Research. Search in Google Scholar

6. Gong, J., Guo, C. Y., Wang, C., Wu, T. C., & Song, K. W. (2019). Analysis of Waterjet-Hull Interaction and its Impact on the Propulsion Performance of a Four-Waterjet-Propelled Ship. Ocean Engineering, 180, 211–222. DOI: 10.1016/j. oceaneng.2019.04.002 Search in Google Scholar

7. Brandau, J. H. (1968). Performance of Waterjet Propulsion Systems – A Review of the State-of-the-Art. Journal of Hydro-nautics, 2 (2), 61–73. DOI: 10.1109/ULTSYM.2013.033510.1109/ULTSYM.2013.0335 Search in Google Scholar

8. Specialist Committee on Validation of Waterjet Test Procedures. (2005). Final Report and Recommendations to the 23rd ITTC. In Proceedings of 24th International Towing Tank Conference, (pp. 387–415), 26 March 2002, Edinburgh, Scotland: The University of Newcastle. Search in Google Scholar

9. Bulten, N. W. H. (2006). Numerical analysis of a waterjet propulsion system. Eindhoven, the Netherlands: Technische Universiteit Eindhoven. DOI: 10.6100/IR614907 Search in Google Scholar

10. Hoerner, S. F. (1965). Fluid dynamic drag: Practical information on aerodynamic drag and hydrodynamic resistance. Washington, D.C., USA: Hoerner Fluid Dynamics. Search in Google Scholar

11. Kandasamy, M., Ooi, S. K., Carrica, P., & Stern, F. (2010). Integral Force/Moment Waterjet Model for CFD Simulations. Journal of fluids engineering, 132 (10), 101103–101112. DOI: 10.1115/1.400257310.1115/1.4002573 Search in Google Scholar

12. Cenqel, Y. A., & Cimbala, J. M. (2017). Fluid mechanics: Fundamentals and applications (4th ed). New York, USA: McGraw-Hill Education. Search in Google Scholar

13. Molland, A. F. (2011). The maritime engineering reference book: A guide to ship design, construction and operation. Hungary: Elsevier. Search in Google Scholar

14. Ledoux, M., & Hami, A. E. (2017). Compressible flow propulsion and digital approaches in fluid mechanics. UK: Wiley-ISTE.10.1002/9781119368786 Search in Google Scholar

15. Vutukuru, S. K., Tipans, I., Viba, J., & Irbe, M. (2020). Form optimization and interaction analysis of plane symmetry prism in air. In the 19th International Scientific Conference “Engineering for Rural Development” (pp. 739–746), 20–22 May 2020, Jelgava, Latvia: Latvia University of Life Sciences and Technologies. DOI: 10.22616/ERDev2020.19.TF170 Search in Google Scholar

16. University of Tartu. (2013). Lecture 12. Comparing Measurement Results Using Measurement Uncertainty Estimates. Available at https://sisu.ut.ee/measurement/12-using-measurement-uncertainty-estimates-decision-making Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics