À propos de cet article

Citez

1. Vazquez-Calvo, C., Alvarez De Buergo, M., Fort, R., & Varas-Muriel, M.J. (2012). The Measurement of Surface Roughness to Determine the Suitability of Different Methods for Stone Cleaning. J Geophys Eng, 9, S108–17. https://doi.org/10.1088/1742-2132/9/4/S108.10.1088/1742-2132/9/4/S108 Search in Google Scholar

2. Al-Samarai, R.A.H., Ahmad, K.R., & Al-Douri, Y. (2012). Evaluate the Effects of Various Surface Roughness on the Tribological Characteristics under Dry and Lubricated Conditions for Al-Si Alloy. J Surf Eng Mater Adv Technol, 2, 167–73. https://doi.org/10.4236/jsemat.2012.23027.10.4236/jsemat.2012.23027 Search in Google Scholar

3. Castillejos, E.A.H., & Tania, M.F.F. (2019). Characterization of Roughness, Porosity and Thermal Resistances of Continuous Casting Mold Slag Layers Devitrified and Crystallized in Laboratory. Metall Mater Trans B Process Metall Mater Process Sci, 50 (24), 36–53. https://doi.org/10.1007/s11663-019-01655-4.10.1007/s11663-019-01655-4 Search in Google Scholar

4. Altan, T., & Celik, S. (2020). Effect of surface roughness of the metallic interconnects on the bonding strength in solid oxide fuel cells. Int J Hydrogen Energy, 1–12. https://doi.org/10.1016/j.ijhydene.2020.03.136.10.1016/j.ijhydene.2020.03.136 Search in Google Scholar

5. Günther, J., Leuders, S., Koppa, P., Tröster, T., Henkel, S., Biermann, H., & Niendorf, T. (2018). On the effect of internal channels and surface roughness on the high-cycle fatigue performance of Ti-6Al-4V processed by SLM. Mater Des, 143, 1–11. https://doi.org/10.1016/j.matdes.2018.01.042.10.1016/j.matdes.2018.01.042 Search in Google Scholar

6. Bera, B. (2014). Generalized adhesion theory of friction. In Asiat. Conf. (pp. 2–4), 17–20 February 2014, Agra, India. Search in Google Scholar

7. Anvari, A. (2016). Friction coefficient variation with sliding velocity in copper with copper contact. Period Polytech Mech Eng, 60, 137–41. https://doi.org/10.3311/PPme.8429.10.3311/PPme.8429 Search in Google Scholar

8. Oshita, K., Yanagi, M., Okada, Y., Komiyama, S., & Wang, Z. (2017). Effect of surface roughness on improved lubricity under an ironing condition using a synthetic mica-organic intercalation compound. Tribol Online,12, 193–202. https://doi.org/10.2474/trol.12.193.10.2474/trol.12.193 Search in Google Scholar

9. Zhai, C., Gan, Y., Hanaor, D., Proust, G., & Retraint, D. (2016). The Role of Surface Structure in Normal Contact Stiffness. Exp Mech, 56, 359–68. https://doi.org/10.1007/s11340-015-0107-0.10.1007/s11340-015-0107-0 Search in Google Scholar

10. Manaf, N.D., Fukuda, K., Subhi, Z.A., & Mohd-Radzi, M.F. (2019). Influences of surface roughness on the water adsorption on austenitic stainless steel. Tribol Int, 136, 75–81. https://doi.org/10.1016/j.triboint.2019.03.014.10.1016/j.triboint.2019.03.014 Search in Google Scholar

11. Deendarlianto, A., Takata, Y., Kohno, M., Hidaka, S., Wakui, T., Majid, A.I., … & Widyaparaga, A. (2016). The effects of the surface roughness on the dynamic behavior of the successive micrometric droplets impacting onto inclined hot surfaces. Int J Heat Mass Transf, 101, 1217–26. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.132.10.1016/j.ijheatmasstransfer.2016.05.132 Search in Google Scholar

12. Menezes, P.L., & Kailas, S.V. (2016). Role of surface texture and roughness parameters on friction and transfer film formation when UHMWPE sliding against steel. Biosurface and Biotribology, 2, 1–10. https://doi.org/10.1016/j.bsbt.2016.02.001.10.1016/j.bsbt.2016.02.001 Search in Google Scholar

13. Feng, D., Shen, M., Peng, X.D., & Meng, X.K. (2017). Surface Roughness Effect on the Friction and Wear Behaviour of Acrylonitrile–Butadiene Rubber (NBR) under Oil Lubrication. Tribol Lett, 65, 1–14. https://doi.org/10.1007/s11249-016-0793-5.10.1007/s11249-016-0793-5 Search in Google Scholar

14. Jacobs, T.D.B., Junge, T., & Pastewka, L. (2017). Quantitative Characterization of Surface Topography Using Spectral Analysis. Surf Topogr Metrol Prop, 5, 1-10. https://doi.org/10.1088/2051-672X/aa51f8.10.1088/2051-672X/aa51f8 Search in Google Scholar

15. Erinosho, M.F., Akinlabi, E.T., & Johnson, O.T. (2017). Characterization of Surface Roughness of Laser Deposited Titanium Alloy and Copper Using AFM. Appl Surf Sci, 435, 393–7. https://doi.org/10.1016/j.apsusc.2017.11.131.10.1016/j.apsusc.2017.11.131 Search in Google Scholar

16. Orhadahwe, T.A., Adeleke, A.A., Aweda, J.O., Ikubanni, P.P., & Odusote, J.K. (2020). Microstructural Image Analyses of Mild Carbon Steel Subjected to a Rapid Cyclic Treatment. J Chem Technol Metall, 55, 198–209. Search in Google Scholar

17. Adeleke, A.A., Ikubanni, P.P., Orhadahwe, T.A., Aweda, J.O., Odusote, J.K., & Agboola, O.O. (2019). Microstructural Assessment of AISI 1021 Steel under Rapid Cyclic Heat Treatment Process. Results Eng; 4, 1–4. https://doi.org/10.1016/j.rineng.2019.100044.10.1016/j.rineng.2019.100044 Search in Google Scholar

18. Jiang, H., Browning, R., Fincher, J., Gasbarro, A., Jones, S., & Sue, H.J. (2008). Influence of Surface Roughness and Contact Load on Friction Coefficient and Scratch Behavior of Thermoplastic Olefins. Appl Surf Sci, 254, 4494–9. https://doi.org/10.1016/j.apsusc.2008.01.067.10.1016/j.apsusc.2008.01.067 Search in Google Scholar

19. Sedlaček, M., Podgornik, B., & Vižintin, J. (2009). Influence of Surface Preparation on Roughness Parameters, Friction and Wear. Wear, 266, 482–7. https://doi.org/10.1016/j.wear.2008.04.017.10.1016/j.wear.2008.04.017 Search in Google Scholar

20. Ivković, B., Djurdjanović, M., & Stamenković, D. (2000). The Influence of the Contact Surface Roughness on the Static Friction Coefficient. Tribol Ind, 22, 41–4. Search in Google Scholar

21. Ambekar, A.G. (2007). Mechanism and Machine Theory. Eastern Ec. New Delhi: Prentice-Hall of India Private Limited. Search in Google Scholar

22. Kim, H.Y., Lee, H.J., & Kang, B.H. (2002). Sliding of Liquid Drops Down an Inclined Solid Surface. J Colloid Interface Sci, 247, 372–80. https://doi.org/10.1006/jcis.2001.8156.10.1006/jcis.2001.815616290477 Search in Google Scholar

23. Kumar, V., & Gupta, P. (2012). Importance of Statistical Measures in Digital Image Processing. Int J Emerg Technol Adv, 2, 56–62. Search in Google Scholar

24. Motoyoshi, I., Nishida, S., Sharan, L., & Adelson, E.H. (2007). Image Statistics and the Perception of Surface Qualities. Nature, 447, 206–9. https://doi.org/10.1038/nature05724.10.1038/nature0572417443193 Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics