Accès libre

Optimization of Energy Extraction Using Definite Geometry Prisms in Airflow

À propos de cet article

Citez

1. Wei, G. (2005). A Fixed-Mesh Method for General Moving Objects in Fluid Flow. International Journal of Modern Physics B, 19 (28), 1719–1722.10.1142/S021798490501030XSearch in Google Scholar

2. Wick, T. (2011). Fluid-Structure Interactions Using Different Mesh Motion Techniques. Journal of Computers and Structures, 89 (13), 1456–1467.10.1016/j.compstruc.2011.02.019Search in Google Scholar

3. Codina, R., Houzeaux, G., Coppola-Owen, H., & Baiges, J. (2009). The Fixed-Mesh ALE Approach for the Numerical Approximation of Flows in Moving Domains. Journal of Computational Physics, 228 (5), 1591–1611.10.1016/j.jcp.2008.11.004Search in Google Scholar

4. Tezduyar, T. E., Sathe, S., Keedy, R., & Stein, K. (2006). Space-Time Finite Element Techniques for Computation of Fluid-Structure Interactions. Comput. Methods Appl. Mech. Eng., 195, 2002–2027.10.1016/j.cma.2004.09.014Search in Google Scholar

5. Tezduyar, T. E., & Sathe, S. (2007). Modelling of Fluid-Structure Interaction with the Spacetime Finite Elements: Solution Techniques. Int. J. Numer. Meth. Fluids, 54, 855–900.10.1002/fld.1430Search in Google Scholar

6. Han, D., Liu, G. R., & Abdallah, S. (2020). An Eulerian-Lagrangian-Lagrangian Method for 2D Fluid-Structure Interaction Problem with a Thin Flexible Structure Immersed in Fluids. Computers & Structures, 228, 106179.10.1016/j.compstruc.2019.106179Search in Google Scholar

7. Takizawa, K, & Tezduyar, T. E. (2011). Multiscale Space-Time Fluid-Structure Interaction Techniques. Comput. Mech., 48, 247–267.10.1007/s00466-011-0571-zSearch in Google Scholar

8. Neumuller, M., & Steinbach, O. (2011). Refinement of Flexible Space-Time Finite Element Meshes and Discontinuous Galerkin Methods. Computing and Visualization in Science, 14, 189–205.10.1007/s00791-012-0174-zSearch in Google Scholar

9. Gerstenberger, A., & Wall, W. A. (2006). An Extended Finite Element Method Based Approach for Large Deformation Fluid-Structure Interaction. European Conference on Computational Fluid Dynamics. ECCOMAS CFD, Netherlands, TU Delf.Search in Google Scholar

10. Behr, M. (2008). Simplex Space-Time Meshes in Finite Element Simulations. International Journal for Numerical Methods in Fluids, 57 (9), 1421–1434.10.1002/fld.1796Search in Google Scholar

11. Danwitz, M. V., Karyofylli, V., Hoster, N., & Behr, M. (2019). Simplex Space-Time Meshes in Compressible Flow Simulations. International Journal for Numerical Methods in Fluids, 91 (1), 29–48.10.1002/fld.4743Search in Google Scholar

12. Diosady, L.T., Murman, S.M., & Carton de Wiart, C. (2018). A higher order space time finite element method for moving body and fluid structure interaction problem. In 10th International Conference on Computational Fluid Dynamics (ICCFD10) (pp. 1–16), 9–13 July 2018, Barcelona, Spain.Search in Google Scholar

13. Tipans, I., Viba, J., Irbe, M., & Vutukuru, S. K. (2019). Analysis of Non-Stationary Flow Interaction with Simple Form Objects. Agronomy Research, 17 (1), 1227–1234.Search in Google Scholar

14. Barrero-Gil, A., Pindado, S., & Avila, S. (2012). Extracting Energy from Vortex-Induced Vibrations. A Parametric Study. Applied Mathematical Modelling, 36 (7), 3153–3160.10.1016/j.apm.2011.09.085Search in Google Scholar

15. Bearman, P.W. (1984). Vortex Shedding from Oscillating Bluff Bodies. Fluid Mech., 16, 195–222.10.1146/annurev.fl.16.010184.001211Search in Google Scholar

16. Chin, D. D., & Lentink, D. (2016). Flapping Wing Aerodynamics: From Insects to Vertebrates. J. Exp. Biol., 219, 920–932.10.1242/jeb.04231727030773Search in Google Scholar

eISSN:
0868-8257
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics