Accès libre

Paraffin Permeability of Synthetic Gypsum Binders Modified by Individual Polymers

 et    | 31 déc. 2019
À propos de cet article

Citez

1. Lushnikova, N., ---amp--- Dvorkin, L. (2016). Sustainability of gypsum products as a construction material. In J. Khatib, ed., Woodhead Publishing Series in Civil and Structural Engineering (pp. 643–681). https://doi.org/https://doi.org/10.1016/B978-0-08-100370-1.00025-110.1016/B978-0-08-100370-1.00025-1Search in Google Scholar

2. Cheremisinoff, N. P. (2012). Solid wastes. In Handbook of Pollution Prevention and Cleaner Production (pp. 31–61). https://doi.org/10.1016/b978-1-4377-7815-1.00002-310.1016/B978-1-4377-7815-1.00002-3Search in Google Scholar

3. Felsing, W. A., ---amp--- Potter, A. D. (1930). Gypsum and Gypsum Products. Journal of Chemical Education, 7(12), 2788. https://doi.org/10.1021/ed007p278810.1021/ed007p2788Search in Google Scholar

4. Mróz, P., ---amp--- Mucha, M. (2018). Hydroxyethyl Methyl Cellulose as a Modifier of Gypsum Properties. Journal of Thermal Analysis and Calorimetry, 134(2), 1083–1089. https://doi.org/10.1007/s10973-018-7238-310.1007/s10973-018-7238-3Search in Google Scholar

5. Pourchez, J., Peschard, A., Grosseau, P., Guyonnet, R., Guilhot, B., ---amp--- Vallée, F. (2006). HPMC and HEMC Influence on Cement Hydration. Cement and Concrete Research, 36(2), 288–294. https://doi.org/10.1016/j.cemconres.2005.08.00310.1016/j.cemconres.2005.08.003Search in Google Scholar

6. Bülichen, D., Kainz, J., ---amp--- Plank, J. (2012). Working Mechanism of Methyl Hydroxyethyl Cellulose (MHEC) as Water Retention Agent. Cement and Concrete Research, 42(7), 953–959. https://doi.org/10.1016/j.cemconres.2012.03.01610.1016/j.cemconres.2012.03.016Search in Google Scholar

7. Patural, L., Marchal, P., Govin, A., Grosseau, P., Ruot, B., ---amp--- Devès, O. (2011). Cellulose Ethers Influence on Water Retention and Consistency in Cement-Based Mortars. Cement and Concrete Research, 41(1), 46–55. https://doi.org/10.1016/j.cemconres.2010.09.00410.1016/j.cemconres.2010.09.004Search in Google Scholar

8. Heim, D., Mrowiec, A., Pralat, K., ---amp--- Mucha, M. (2018). Influence of Tylose MH1000 Content on Gypsum Thermal Conductivity. Journal of Materials in Civil Engineering, 30(3). https://doi.org/10.1061/(ASCE)MT.1943-5533.000217710.1061/(ASCE)MT.1943-5533.0002177Search in Google Scholar

9. Almeida, R. F. C., ---amp--- Klemm, A. J. (2018). Effect of GGBS on Water Absorption Capacity and Stability of Superabsorbent Polymers Partially Crosslinked with Alkalis. Journal of Materials in Civil Engineering, 30(12), 4018315. https://doi.org/10.1061/(ASCE)MT.1943-5533.000251110.1061/(ASCE)MT.1943-5533.0002511Search in Google Scholar

10. Singh, M., ---amp--- Garg, M. (1996). Relationship between Mechanical Properties and Porosity of Water-Resistant Gypsum Binder. Cement and Concrete Research, 26(3), 449–456. https://doi.org/10.1016/S0008-8846(96)85032-010.1016/S0008-8846(96)85032-0Search in Google Scholar

11. Garbalińska, H., Kowalski, S. J., ---amp--- Staszak, M. (2013). Moisture Diffusivity in Mortars of Different Water-Cement Ratios and in Narrow Ranges of Air Humidity Changes. International Journal of Heat and Mass Transfer, 56(1–2), 212–222. https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.02610.1016/j.ijheatmasstransfer.2012.09.026Search in Google Scholar

12. Garbalińska, H., ---amp--- Wygocka, A. (2014). Microstructure Modification of Cement Mortars: Effect on Capillarity and Frost-Resistance. Construction and Building Materials, 51, 258–266. https://doi.org/10.1016/j.conbuildmat.2013.10.09110.1016/j.conbuildmat.2013.10.091Search in Google Scholar

13. Hawes, D. W., Feldman, D., ---amp--- Banu, D. (1993). Latent Heat Storage in Building Materials. Energy and Buildings, 20(1), 77–86. https://doi.org/10.1016/0378-7788(93)90040-210.1016/0378-7788(93)90040-2Search in Google Scholar

14. Feldman, D., Banu, D., ---amp--- Hawes, D. W. (1995). Development and Application of Organic Phase Change Mixtures in Thermal Storage Gypsum Wallboard. Solar Energy Materials and Solar Cells, 36(2), 147–157. https://doi.org/10.1016/0927-0248(94)00168-R10.1016/0927-0248(94)00168-RSearch in Google Scholar

15. Stovall, T. K., ---amp--- Tomlinson, J. J. (1995). What are the Potential Benefits of Including Latent Storage in Common Wallboard? Journal of Solar Energy Engineering, 117(4), 318–325. Retrieved from http://dx.doi.org/10.1115/1.284786810.1115/1.2847868Search in Google Scholar

16. Feldman, D., Shapiro, M. M., Banu, D., ---amp--- Fuks, C. J. (1989). Fatty Acids and their Mixtures as Phase-Change Materials for Thermal Energy Storage. Solar Energy Materials, 18(3–4), 201–216. https://doi.org/10.1016/0165-1633(89)90054-310.1016/0165-1633(89)90054-3Search in Google Scholar

17. Peippo, K., Kauranen, P., ---amp--- Lund, P. D. (1991). A Multicomponent PCM Wall Optimized for Passive Solar Heating. Energy and Buildings, 17(4), 259–270. https://doi.org/10.1016/0378-7788(91)90009-R10.1016/0378-7788(91)90009-RSearch in Google Scholar

18. Kośny, J. (2015). Chapter 2: Short history of PCM applications in building envelopes. In PCM-Enhanced Building Components (p. 281). https://doi.org/10.1007/978-3-319-14286-910.1007/978-3-319-14286-9Search in Google Scholar

19. Jurkowska, M., ---amp--- Szczygieł, I. (2016). Review on Properties of Microencapsulated Phase Change Materials Slurries (mPCMS). Applied Thermal Engineering, 98, 365–373. https://doi.org/10.1016/j.applthermaleng.2015.12.05110.1016/j.applthermaleng.2015.12.051Search in Google Scholar

20. Konuklu, Y., Ostry, M., Paksoy, H. O., ---amp--- Charvat, P. (2015). Review on Using Microencapsulated Phase Change Materials (PCM) in Building Applications. Energy and Buildings, 106, 134–155. https://doi.org/10.1016/j.enbuild.2015.07.01910.1016/j.enbuild.2015.07.019Search in Google Scholar

21. Li, C., Yu, H., Song, Y., ---amp--- Liu, Z. (2019). Novel Hybrid Microencapsulated Phase Change Materials Incorporated Wallboard for Year-Long Year Energy Storage in Buildings. Energy Conversion and Management, 183, 791–802. https://doi.org/10.1016/J.ENCONMAN.2019.01.03610.1016/j.enconman.2019.01.036Search in Google Scholar

22. Halimov, A., Lauster, M., ---amp--- Müller, D. (2019). Validation and Integration of a Latent Heat Storage Model into Building Envelopes of a High-Order Building Model for Modelica Library AixLib. Energy and Buildings, 202, 109336. https://doi.org/10.1016/J.ENBUILD.2019.10933610.1016/j.enbuild.2019.109336Search in Google Scholar

23. Gowreesunker, B. L., Stankovic, S. B., Tassou, S. A., ---amp--- Kyriacou, P. A. (2013). Experimental and Numerical Investigations of the Optical and Thermal Aspects of a PCM-Glazed Unit. Energy and Buildings, 61, 239–249. https://doi.org/10.1016/j.enbuild.2013.02.03210.1016/j.enbuild.2013.02.032Search in Google Scholar

24. Oliver, A. (2012, May 1). Thermal Characterization of Gypsum Boards with PCM Included: Thermal Energy Storage in Buildings through Latent Heat. Energy and Buildings, 48, 1–7. https://doi.org/10.1016/j.enbuild.2012.01.02610.1016/j.enbuild.2012.01.026Search in Google Scholar

25. Wang, X., Yu, H., Li, L., ---amp--- Zhao, M. (2016). Research on Temperature Dependent Effective Thermal Conductivity of Composite-Phase Change Materials (PCMs) Wall Based on Steady-State Method in a Thermal Chamber. Energy and Buildings, 126, 408–414. https://doi.org/10.1016/j.enbuild.2016.05.05810.1016/j.enbuild.2016.05.058Search in Google Scholar

eISSN:
2255-8896
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physique, Physique technique et appliquée