À propos de cet article

Citez

1. Lee, D. U., Fu, J., Park, M. G., Liu, H., Ghorbani Kashkooli, A., & Chen, Z. (2016). Self-assembled NiO/Ni(OH)2 nanoflakes as active material for high-power and high-energy hybrid rechargeable battery. Nano Lett., 16, 1794–1802. DOI: 10.1021/acs.nanolett.5b0478810.1021/acs.nanolett.5b04788Open DOISearch in Google Scholar

2. Browne, M., Nolan, H., Berner, N., Duesberg, G., Colavita, P., & Lyons, M. (2016). Electrochromic nickel oxide films for smart window applications. Int. J. Electrochem. Sci., 11, 6636–6647. DOI: 10.20964/2016.08.3810.20964/2016.08.38Search in Google Scholar

3. Lee, S. G., Lee, S., & Lee, H. I. (2001). Photocatalytic production of hydrogen from aqueous solution containing CN- as a hole scavenger. Appl. Catal. A, 207, 173–181. DOI: 10.1016/S0926-860X(00)00671-210.1016/S0926-860X(00)00671-2Open DOISearch in Google Scholar

4. Ando, M., Zehetner, J., Kobayashi, T., & Haruta, M. (1996). Large optical CO sensitivity of NO2-pretreated Au-NiO composite films. Sens. Actuators B, 36, 513–516. DOI: 10.1016/S0925-4005(97)80121-910.1016/S0925-4005(97)80121-9Open DOISearch in Google Scholar

5. Múčka, V., & Baburek, E. (1998). Catalytic properties of nickel-yttrium mixed oxides and the influence of ionizing radiation. Rad. Phys. Chem., 53, 483–489. DOI: 10.1016/S0969-806X(98)00216-310.1016/S0969-806X(98)00216-3Open DOISearch in Google Scholar

6. Lee, C. B., B. S. Kang, B. S., Benayad, A., Lee, M. J., Ahn, S.-E., Kim, K. H., … & Yoo, I. K. (2008). Effects of metal electrodes on the resistive memory switching property of NiO thin films. Appl. Phys. Lett., 93, 042115. DOI: 10.1063/1.296719410.1063/1.2967194Search in Google Scholar

7. Tsymbal, E. Y., & Pettifor, D. G. (2001). Perspectives of giant magnetoresistance. Solid State Phys., 56, 113–237. DOI: 10.1016/S0081-1947(01)80019-910.1016/S0081-1947(01)80019-9Open DOISearch in Google Scholar

8. Roth, W. L. (1958). Magnetic structures of MnO, FeO, CoO, and NiO. Phys. Rev., 110, 1333–1341. DOI: 10.1103/PhysRev.110.133310.1103/PhysRev.110.1333Search in Google Scholar

9. Hutchings, M. T., & Samuelsen, E. J. (1972). Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties. Phys. Rev. B, 6, 3447–3461. DOI: 10.1103/PhysRevB.6.344710.1103/PhysRevB.6.3447Open DOISearch in Google Scholar

10. Hillebrecht, F. U., Ohldag, H., Weber, N. B., Bethke, C., Mick, U., Weiss, M., & Bahrdt, J. (2001). Magnetic moments at the surface of antiferromagnetic NiO(100). Phys. Rev. Lett., 86, 3419–3422. DOI: 10.1103/PhysRevLett.86.341910.1103/PhysRevLett.86.3419Search in Google Scholar

11. Rooksby, H. P. (1948). A note on the structure of nickel oxide at subnormal and elevated temperatures. Acta Crystallogr., 1, 226. DOI: 10.1107/S0365110X4800061210.1107/S0365110X48000612Open DOISearch in Google Scholar

12. Slack, G. A. (1960). Crystallography and domain walls in antiferromagnetic NiO crystals, J. Appl. Phys., 31, 1571–1582. DOI: 10.1063/1.173589510.1063/1.1735895Open DOISearch in Google Scholar

13. Massarotti, V., Capsoni, D., Berbenni, V., Riccardi, R., Marini, A., & Antolini, E. (1991). Structural characterization of nickel oxide. Z. Naturforsch. A, 46, 503–512. DOI: 10.1515/zna-1991-060610.1515/zna-1991-0606Open DOISearch in Google Scholar

14. Rodic, D., Spasojevic, V., Kusigerski, V., Tellgren, R., & Rundlof, H. (2000). Magnetic ordering in polycrystalline NixZn1-xO solid solutions. Phys. Status Solidi B, 218, 527–536. DOI: 10.1002/1521-3951(200004)218:2<527::AID-PSSB527>3.0.CO;2-I10.1002/1521-3951(200004)218:2<527::AID-PSSB527>3.0.CO;2-Open DOISearch in Google Scholar

15. Balagurov, A. M., Bobrikov, I. A., Sumnikov, S. V., Yushankhai, V. Y., & Mironova-Ulmane, N. (2016). Magnetostructural phase transitions in NiO and MnO: neutron diffraction data. JETP Lett., 104, 88–93. DOI: 10.1134/S002136401614007110.1134/S0021364016140071Open DOISearch in Google Scholar

16. Chung, E. M. L., Paul, D. M., Balakrishnan, G., Lees, M. R., Ivanov, A., & Yethiraj, M. (2003). Role of electronic correlations on the phonon modes of MnO and NiO. Phys. Rev. B, 68, 140406. DOI: 10.1103/PhysRevB.68.14040610.1103/PhysRevB.68.140406Search in Google Scholar

17. Luo, W., Zhang, P., & Cohen, M. L. (2007). Splitting of the zone-center phonon in MnO and NiO. Solid State Commun., 142, 504–508. DOI: 10.1016/j.ssc.2007.03.04710.1016/j.ssc.2007.03.047Open DOISearch in Google Scholar

18. Kant, C., Mayr, F., Rudolf, T., Schmidt, M., Schrettle, F., Deisenhofer, J., & Loidl, A. (2009). Spin-phonon coupling in highly correlated transition-metal monoxides. Eur. Phys. J. Special Topics, 180, 43–59. DOI: 10.1140/epjst/e2010-01211-610.1140/epjst/e2010-01211-6Open DOISearch in Google Scholar

19. Mørup, S., Madsen, D. E., Frandsen, C., Bahl, C. R. H., & Hansen, M. F. (2007). Experimental and theoretical studies of nanoparticles of antiferromagnetic materials. J. Phys.: Condens. Matter, 19, 213202. DOI: 10.1088/0953-8984/19/21/21320210.1088/0953-8984/19/21/213202Search in Google Scholar

20. Nakahigashi, K., Fukuoka, N., & Shimomura, Y. (1975). Crystal structure of antiferromagnetic NiO determined by X-ray topography. J. Phys. Soc. Jpn., 38, 1634–1640. DOI: 10.1143/JPSJ.38.163410.1143/JPSJ.38.1634Open DOISearch in Google Scholar

21. Kodama, R. H., Makhlouf, S. A., & Berkowitz, A. E. (1997). Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett., 79, 1393–1396. DOI: 10.1103/PhysRevLett.79.13910.1103/PhysRevLett.79.139Open DOISearch in Google Scholar

22. Kodama, R. H., & Berkowitz, A. E. (1999). Atomic-scale magnetic modelling of oxide nanoparticles. Phys. Rev. B, 59, 6321–6336. DOI: 10.1103/PhysRevB.59.6321.10.1103/PhysRevB.59.6321Open DOISearch in Google Scholar

23. Tiwari, S. D., & Rajeev, K. P. (2006). Magnetic properties of NiO nanoparticles, Thin Solid Films, 505, 113–117. DOI: 10.1016/j.tsf.2005.10.01910.1016/j.tsf.2005.10.019Open DOISearch in Google Scholar

24. Mandal, S., Banerjee, S., & Menon, K. S. R. (2009). Core-shell model of the vacancy concentration and magnetic behavior for antiferromagnetic nanoparticle. Phys. Rev. B, 80, 214420. DOI: 10.1103/PhysRevB.80.21442010.1103/PhysRevB.80.214420Search in Google Scholar

25. Mandal, S., Menon, K. S. R., Mahatha, S. K., & Banerjee, S. (2011). Finite size versus surface effects on magnetic properties of antiferromagnetic particles. Appl. Phys. Lett., 99, 232507. DOI: 10.1063/1.366809110.1063/1.3668091Search in Google Scholar

26. Cooper, J. F. K., Ionescu, A., Langford, R. M., Ziebeck, K. R. A., Barnes, C. H. W., Gruar, R., … & Ouladdiaf, B. (2013). Core/shell magnetism in NiO nanoparticles. J. Appl. Phys., 114, 083906. DOI: 10.1063/1.481980710.1063/1.4819807Search in Google Scholar

27. Balagurov, A. M., Bobrikov, I. A., Grabis, J., Jakovlevs, D., Kuzmin, A., Maiorov, M., & Mironova-Ulmane, N. (2013). Neutron scattering study of structural and magnetic size effects in NiO. IOP Conf. Ser.: Mater. Sci. Eng., 49, 012021. DOI: 10.1088/1757-899X/49/1/01202110.1088/1757-899X/49/1/012021Open DOISearch in Google Scholar

28. Yang, Z., Gao, D., Tao, K., Zhang, J., Shi, Z., Xu, Q., Shi, S., & Xue, D. (2014). A series of unexpected ferromagnetic behaviors based on the surface-vacancy state: an insight into NiO nanoparticles with a core-shell structure. RSC Adv., 4, 46133–46140. DOI: 10.1039/C4RA06472K10.1039/406472Open DOISearch in Google Scholar

29. Balagurov, A. M., Bobrikov, I. A., Sumnikov, S. V., Yushankhai, V. Y., Grabis, J., Kuzmin, A., … & Sildos, I. (2016). Neutron diffraction study of microstructural and magnetic effects in fine particle NiO powders. Phys. Status Solidi B, 253, 1529–1536. DOI: 10.1002/pssb.20155268010.1002/pssb.201552680Open DOISearch in Google Scholar

30. Richardson, J. T., Yiagas, D. I., Turk, B., Forster, K., & Twigg, M. V. (1991). Origin of superparamagnetism in nickel oxide. J. Appl. Phys., 70, 6977–6982. DOI: 10.1063/1.34982610.1063/1.349826Open DOISearch in Google Scholar

31. Klausen, S. N., Lindgärd, P. A., Lefmann, K., Bødker, F., & Mørup, S. (2002). Temperature dependence of the magnetization of disc shaped NiO nanoparticles. Phys. Status Solidi A, 189, 1039–1042. DOI: 10.1002/1521-396X(200202)189:3<1039::AID-PSSA1039>3.0.CO;2-A10.1002/1521-396X(200202)189:3<1039::AID-PSSA1039>3.0.CO;2-AOpen DOISearch in Google Scholar

32. Li, L., Chen, L., Qihe, R., & Li, G. (2006). Magnetic crossover of NiO nanocrystals at room temperature. Appl. Phys. Lett., 89, 134102. DOI: 10.1063/1.235756210.1063/1.2357562Search in Google Scholar

33. Makhlouf, S. A., Kassem, M. A., & Abdel-Rahim, M. A. (2009). Particle size-dependent electrical properties of nanocrystalline NiO. J. Mater. Sci., 44, 3438–3444. DOI: 10.1007/s10853-009-3457-010.1007/s10853-009-3457-0Open DOISearch in Google Scholar

34. Duan, W. J., Lu, S. H., Wu, Z. L., & Wang, Y. S. (2012). Size effects on properties of NiO nanoparticles grown in alkalisalts. J. Phys. Chem. C, 116, 26043–26051. DOI: 10.1021/jp308073c10.1021/jp308073cOpen DOISearch in Google Scholar

35. Dietz, R. E., Parisot, G. I., & Meixner, A. E. (1971). Infrared absorption and Raman scattering by two-magnon processes in NiO. Phys. Rev. B, 4, 2302–2310. DOI: 10.1103/PhysRevB.4.230210.1103/PhysRevB.4.2302Open DOISearch in Google Scholar

36. Dietz, R. E., Brinkman, W. F., Meixner, A. E., & Guggenheim, H. J. (1971). Raman scattering by four magnons in NiO and KNiF3. Phys. Rev. Lett., 27, 814–817. DOI: 10.1103/PhysRevLett.27.81410.1103/PhysRevLett.27.814Open DOISearch in Google Scholar

37. Lockwood, D. J., Cottam, M. G., & Baskey, J. H. (1992). One- and two-magnon excitations in NiO. J. Magn. Magn. Mater., 104, 1053–1054. DOI: 10.1016/0304-8853(92)90486-810.1016/0304-8853(92)90486-8Open DOISearch in Google Scholar

38. Pressl, M., Mayer, M., Knoll, P., Lo, S., Hohenester, U., & Holzinger-Schweiger, E. (1996). Magnetic Raman scattering in undoped and doped antiferromagnets. J. Raman Spectroscopy, 27, 343–349. DOI: 10.1002/(SICI)1097-4555(199603)27:3/4<343::AID-JRS956>3.0.CO;2-S10.1002/(SICI)1097-4555(199603)27:3/4<343::AID-JRS956>3.0.CO;2-SOpen DOISearch in Google Scholar

39. Grimsditch, M., McNeil, L. E., & Lockwood, D. J. (1998). Unexpected behavior of the antiferromagnetic mode of NiO. Phys. Rev. B, 58, 14462–14466. DOI: 10.1103/PhysRevB.58.1446210.1103/PhysRevB.58.14462Open DOISearch in Google Scholar

40. Cazzanelli, E., Kuzmin, A., Mariotto, G., & Mironova-Ulmane, N. (2003). Study of vibrational and magnetic excitations in NicMg1-cO solid solutions by Raman spectroscopy. J. Phys.: Condensed Matter, 15, 2045. DOI: 10.1088/0953-8984/15/12/32110.1088/0953-8984/15/12/321Open DOISearch in Google Scholar

41. Cazzanelli, E., Kuzmin, A., Mironova-Ulmane, N., & Mariotto, G. (2005). Behavior of one-magnon frequency in antiferromagnetic NicMg1-cO solid solutions. Phys. Rev. B, 71, 134415. DOI: 10.1103/PhysRevB.71.13441510.1103/PhysRevB.71.134415Search in Google Scholar

42. Aytan, E., Debnath, B., Kargar, F., Barlas, Y., Lacerda, M. M., Li, J. X., … & Balandin, A. A. (2017). Spin-phonon coupling in antiferromagnetic nickel oxide. Appl. Phys. Lett., 111, 252402. DOI: 10.1063/1.500959810.1063/1.5009598Search in Google Scholar

43. Haywood, B. C. G., & Collins, M. F. (1969). Lattice dynamics of MnO. J. Phys. C: Solid State Phys., 2, 46. DOI: 10.1088/0022-3719/2/1/30610.1088/0022-3719/2/1/306Open DOISearch in Google Scholar

44. Haywood, B. C. G., & Collins, M. F. (1971). Optical phonons in MnO. J. Phys. C: Solid State Phys., 4, 1299. DOI: 10.1088/0022-3719/4/11/00510.1088/0022-3719/4/11/005Open DOISearch in Google Scholar

45. Upadhyaya, K. S., & Singh, R. K. (1974). Shell model lattice dynamics of transition metal oxides. J. Phys. Chem. Solids, 35, 1175–1179. DOI: 10.1016/S0022-3697(74)80137-X10.1016/S0022-3697(74)80137-XOpen DOISearch in Google Scholar

46. Reichardt, W., Wagner, V., & Kress, W. (1975). Lattice dynamics of NiO. J. Phys. C: Solid State Phys., 8, 3955. DOI: 10.1088/0022-3719/8/23/00910.1088/0022-3719/8/23/009Search in Google Scholar

47. Coy, R. A., Tompson, C. W., & Gürmen, E. (1976). Phonon dispersion in NiO. Solid State Commun., 18, 845–847. DOI: 10.1016/0038-1098(76)90220-910.1016/0038-1098(76)90220-9Open DOISearch in Google Scholar

48. Savrasov, S. Y., & Kotliar, G. (2003). Linear response calculations of lattice dynamics in strongly correlated systems. Phys. Rev. Lett., 90, 056401. DOI: 10.1103/PhysRevLett.90.05640110.1103/PhysRevLett.90.056401Search in Google Scholar

49. Massidda, S., Posternak, M., Baldereschi, A., & Resta, R. (1999). Noncubic behavior of antiferromagnetic transition-metal monoxides with the rocksalt structure. Phys. Rev. Lett., 82, 430–433. DOI: 10.1103/PhysRevLett.82.43010.1103/PhysRevLett.82.430Open DOISearch in Google Scholar

50. Mironova-Ulmane, N., Kuzmin, A., Steins, I., Grabis, J., Sildos, I., & Pärs, M. (2007). Raman scattering in nanosized nickel oxide NiO. J. Phys.: Conf. Ser., 93, 012039. DOI: 10.1088/1742-6596/93/1/01203910.1088/1742-6596/93/1/012039Open DOISearch in Google Scholar

51. Mironova-Ulmane, N., Kuzmin, A., Grabis, J., Sildos, I., Voronin, V., Berger, I., & Kazantsev, V. (2011). Structural and magnetic properties of nickel oxide nanopowders. Solid State Phenomena, 168–169, 341–344. DOI: 10.4028/www.scientific.net/SSP.168-169.34110.4028/www.scientific.net/SSP.168-169.341Open DOISearch in Google Scholar

52. Gandhi, A. C., Pant, J., Pandit, S. D., Dalimbkar, S. K., Chan, T.-S., Cheng, C.-L., … & Wu, S. Y. (2013). Short-range magnon excitation in NiO nanoparticles. J. Phys. Chem. C, 117, 18666–18674. DOI: 10.1021/jp402947910.1021/jp4029479Open DOISearch in Google Scholar

53. Ravikumar, P., Kisan, B., & Perumal, A. (2015). Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles. AIP Adv., 5, 087116. DOI: 10.1063/1.492842610.1063/1.4928426Search in Google Scholar

54. Mironova-Ulmane, N., Kuzmin, A., & Sildos, I. (2015). Template-based synthesis of nickel oxide. IOP Conf. Ser.: Mater. Sci. Eng., 77, 012025. DOI: 10.1088/1757-899X/77/1/01202510.1088/1757-899X/77/1/012025Open DOISearch in Google Scholar

55. Mironova-Ulmane, N., Kuzmin, A., Sildos, I., & Pärs, M. (2011). Polarisation dependent Raman study of single-crystal nickel oxide. Centr. Eur. J. Phys., 9, 1096–1099. DOI: 10.2478/s11534-010-0130-910.2478/s11534-010-0130-9Open DOISearch in Google Scholar

56. Mironova-Ulmane, N., Kuzmin, A., Skvortsova, V., & Sildos, I. (2002). Exciton-magnon interactions in NicMg1-cO single-crystals. Phys. Solid State, 44, 1463–1467. DOI: 10.1134/1.150133810.1134/1.1501338Open DOISearch in Google Scholar

57. Ishikawa, K., Fujima, N., & Komura, H. (1985). First-order Raman scattering in MgO micro-crystals. J. Appl. Phys., 57, 973–975. DOI: 10.1063/1.33470110.1063/1.334701Open DOISearch in Google Scholar

58. Gouadec, G., & Colomban, P. (2007). Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progr. Crystal Growth Charact. Mater., 53, 1–56. DOI: 10.1016/j.pcrysgrow.2007.01.00110.1016/j.pcrysgrow.2007.01.001Open DOISearch in Google Scholar

59. Alders, D., Tjeng, L. H., Voogt, F. C., Hibma, T., Sawatzky, G. A., Chen, C. T., & Iacobucci, S. (1998). Temperature and thickness dependence of magnetic moments in NiO epitaxial films. Phys. Rev. B, 57, 11623–11631. DOI: 10.1103/PhysRevB.57.1162310.1103/PhysRevB.57.11623Open DOISearch in Google Scholar

eISSN:
0868-8257
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics