Accès libre

Electronic Processes in Solid State: Dirac Framework

   | 28 mars 2019
À propos de cet article

Citez

The present paper proposes canonical Dirac framework adapted for application to the electronic processes in solid state. The concern is a spatially periodic structure of atoms distinguished by birth and annihilation of particle states excited due to interaction with the electromagnetic field. This implies replacing the conventional energy-momentum relation specific of the canonical Dirac framework and permissible for particle physics by a case specific relation available for the solid state. The advancement is a unified and consistent mathematical framework incorporating the Hilbert space, the quantum field, and the special relativity. Essential details of the birth and annihilation of the particle states are given by an illustrative two-band model obeying basic laws of quantum mechanics, special relativity, and symmetry principles maintained from the canonical Dirac framework as a desirable property and as a prerogative for the study of the particle coupling and correlation.

eISSN:
0868-8257
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics