À propos de cet article

Citez

1. Brik, M. G., Suchocki, A., & Kaminska, A. (2014). Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements. Inorganic chemistry, 53(10), 5088–5099.10.1021/ic500200aSearch in Google Scholar

2. Suchocki, A., & Powell, R.C. (1988). Laser-induced grating spectroscopy of Cr3+-doped Gd3Ga5O12 and Gd3Sc2Ga3O12 crystals. Chemical Physics, 128(1), 59–71.10.1016/0301-0104(88)85062-6Search in Google Scholar

3. Matkovski, A., Durygin, A., Suchocki, A., Sugak, D., Neuroth, G., Walrafend, F., ... Solski, I. (1999). Photo and gamma induced color centers in the YAlO3 and YAlO3:Nd single crystals. Optical Materials, 12(1), 75–81.10.1016/S0925-3467(98)00057-3Search in Google Scholar

4. Dimza, V., Popov, A. I., Lāce, L., Kundzins, M., Kundzins, K., Antonova, M., & Livins, M. (2017). Effects of Mn doping on dielectric properties of ferroelectric relaxor PLZT ceramics. Current Applied Physics, 17(2), 169–173.10.1016/j.cap.2016.11.010Search in Google Scholar

5. Porotnikova, N. M., Anan’ev, M. V., & Kurumchin, E. K. (2011). Effect of defect structure of lanthanum manganite on oxygen exchange kinetics and diffusion. Russian Journal of Electrochemistry, 47(11), 1250–1256.10.1134/S1023193511110139Search in Google Scholar

6. Porotnikova, N. M., Eremin, V. A., Farlenkov, A. S., Kurumchin, E. K., Sherstobitova, E. A., Kochubey, D. I., & Ananyev, M. V. (2018). Effect of AO segregation on catalytical activity of La0.7A0.3MnO3±δ (A= Ca, Sr, Ba) regarding oxygen reduction reaction. Catalysis Letters, 148(9), 2839–2847.10.1007/s10562-018-2456-7Search in Google Scholar

7. Piskunov, S., Isakoviča, I., & Popov, A. I. (2018). Electronic structure of Mn3+Al and Mn2+Al-doped YAlO3: Prediction from the first principles. Optical Materials, 85, 162–166.10.1016/j.optmat.2018.08.039Search in Google Scholar

8. Klym, H., Ingram, A., Shpotyuk, O., Hadzaman, I., Solntsev, V., Hotra, O., & Popov, A. I. (2016). Positron annihilation characterization of free volume in micro-and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temperature Physics, 42(7), 601–605.10.1063/1.4959021Search in Google Scholar

9. Piskunov, S., Isakoviča, I., & Popov, A. I. (2018). Atomic structure of manganese-doped yttrium orthoaluminate. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 434, 6–8.10.1016/j.nimb.2018.07.037Search in Google Scholar

10. Porotnikova, N.M., Ananyev, M.V., Eremin, V.A., Molchanova, N.G., & Kurumchin, E.K. (2016). Effect of acceptor substitution in perovskites La1-xAxMnO3±δ (A = Ca, Sr, Ba) on the kinetics of interaction of gas-phase oxygen. Russian Journal of Electrochemistry, 52(8), 717–722.10.1134/S1023193516080103Search in Google Scholar

11. Zhydachevskyy, Ya., Martynyuk, N., Popov, A.I., Sugak, D., Bilski, P., Ubizskii, S., … Suchocki, A. (2018). Thermally induced fading of Mn-doped YAP nanoceramics. Journal of Physics: Conference Series, 987(1), 012009.10.1088/1742-6596/987/1/012009Search in Google Scholar

12. Zhang, Y., Wu, Z., Geng, D., Kang, X., Shang, M., Li, X., … Lin, J. (2014). Full color emission in ZnGa2O4: Simultaneous control of the spherical morphology, luminescent, and electric properties via hydrothermal approach. Advanced Functional Materials, 24(42), 6581–6593.10.1002/adfm.201402092Search in Google Scholar

13. Luchechko, A., & Kravets, O. (2017). Novel visible phosphors based on MgGa2O4-ZnGa2O4 solid solutions with spinel structure co-doped with Mn2+ and Eu3+ ions. Journal of Luminescence, 192, 11–1610.1016/j.jlumin.2017.05.046Search in Google Scholar

14. Duan, X., Yu, F., & Wu, Y. (2012). Synthesis and luminescence properties of ZnGa2O4 spinel doped with Co2+ and Eu3+ ions. Applied Surface Science, 261, 830–834.10.1016/j.apsusc.2012.08.112Search in Google Scholar

15. Huo, Q., Tu, W., & Guo, L. (2017). Enhanced photoluminescence property and broad color emission of ZnGa2O4 phosphor due to the synergistic role of Eu3+ and carbon dots. Optical Materials, 72, 305–312.10.1016/j.optmat.2017.06.013Search in Google Scholar

16. Polisadova, Е. F., Vaganov, V. А., Stepanov, S. A., Paygin, V. D., Khasanov, О. L., Dvilis, E. S., ... Kalinin, R. G. (2018). Pulse cathodoluminescence of the impurity centers in ceramics based on the MgAl2O4 spinel. Journal of Applied Spectroscopy, 85(3), 416–421.10.1007/s10812-018-0666-9Search in Google Scholar

17. Martynyuk, N.V., Ubizskii, S.B., Buryy, O.A., Becker, K.D., & Kreye, M. (2005). Optical in-situ study of the oxidation and reduction kinetics of Yb-substituted YAG epitaxial films. Physica Status Solidi C: Conferences, 2(1), 330–333.10.1002/pssc.200460177Search in Google Scholar

18. Zhydachevskii, Y., Syvorotka, I.I., Vasylechko, L., Sugak, D., Borshchyshyn, I.D., Luchechko, A.P., … Suchocki, A. (2012). Crystal structure and luminescent properties of nanocrystalline YAG and YAG:Nd synthesized by sol-gel method. Optical Materials, 34(12), 1984–1989.10.1016/j.optmat.2011.12.023Search in Google Scholar

19. Luchechko, A., Kravets, O., Kostyk, L., & Tsvetkova, O. (2016). Luminescence spectroscopy of Eu3+and Mn2+ ions in MgGa2O4 spinel. Radiation Measurements, 90, 47–50.10.1016/j.radmeas.2015.12.003Search in Google Scholar

20. Kirm, M., Feldbach, E., Lushchik, A., Lushchik, Ch., Maaroos, A., Savikhina, & T. (1997). Luminescent materials with photon multiplication. Optical Inorganic Dielectric Materials and Devices (eds. A. Krumins, D.K. Millers, A. Sternberg, J. Spigulis) Proc. SPIE, 2967, 18–23.10.1117/12.266529Search in Google Scholar

21. Lushchik, A., Lushchik, Ch., Kotlov, A., Kudryavtseva, I., Maaroos, A., Nagirnyi, V., & Vasil’chenko, E. (2004). Spectral transformers of VUV radiation on the basis of wide-gap oxides. Radiation Measurements, 38(4–6), 747–752.10.1016/j.radmeas.2004.01.013Search in Google Scholar

22. Lushchik, A., Lushchik, C., Popov, A.I., Schwartz, K., Shablonin, E., & Vasil’chenko, E. (2016). Influence of complex impurity centres on radiation damage in wide-gap metal oxides. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 374, 90–96.10.1016/j.nimb.2015.07.004Search in Google Scholar

23. Lushchik, A., Dolgov, S., Feldbach, E., Pareja, R., Popov, A. I., Shablonin, E., & Seeman, V. (2018). Creation and thermal annealing of structural defects in neutron-irradiated MgAl2O4 single crystals. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 435, 31–37.10.1016/j.nimb.2017.10.018Search in Google Scholar

24. Kravets, O.P., Lys, R.M., Tsvetkova, O.V., Luchechko, A.P., & Pavlyk, B.V. (2018). Thermally stimulated luminescence and thermally stimulated depolarization currents in MgGa2O4 spinels. Journal of Physical Studies, 22(1), 1602.10.30970/jps.22.1602Search in Google Scholar

25. Luchechko, A., Kravets, O., & Syvorotka, I.I. (2017). Optical and luminescence spectroscopy of zinc gallate phosphors codoped with manganese and europium ions. Spectroscopy Letters, 50(7), 404–410.10.1080/00387010.2017.1345947Search in Google Scholar

26. Luchechko, A., Kravets, O., Tsvetkova, O. (2017). Structure and optical-lumenescent characteristics of Mg1-xZnxGa2O4: Mn2+ ceramics. Journal of Nano- and Electronic Physics, 9(1), 01003.10.21272/jnep.9(1).01003Search in Google Scholar

27. Valiev, D., Khasanov, O., Dvilis, E., Stepanov, S., Polisadova, E., & Paygin, V. (2018). Luminescent properties of MgAl2O4 ceramics doped with rare earth ions fabricated by spark plasma sintering technique. Ceramics International, 44(17), 20768–20773.10.1016/j.ceramint.2018.08.076Search in Google Scholar

28. Tsai, B. S., Chang, Y. H., & Chen, Y. C. (2006). Preparation and luminescent characteristics of Eu3+-activated MgxZn1−xGa2O4 nanocrystals. Journal of Alloys and Compounds, 407(1–2), 289–293.10.1016/j.jallcom.2005.06.021Search in Google Scholar

29. Luchechko, A., & Kravets, O. (2017). Synthesis and luminescent properties of magnesium gallate spinel doped with Mn2+ and Eu3+ ions. Physica Status Solidi С, 14(1–2), 1600146.10.1002/pssc.201600146Search in Google Scholar

30. Luchechko, A., Zhydachevskyy, Y., Maraba, D., Bulur, E., Ubizskii, S., & Kravets, O. (2018). TL and OSL properties of Mn2+-doped MgGa2O4 phosphor. Optical Materials, 78, 502–507.10.1016/j.optmat.2018.03.004Search in Google Scholar

31. Takesada, M., Osada, M., & Isobe, T. (2009). Glycothermal synthesis and photoluminescence of MgGa2O4: Mn2+ nanophosphors: Comparison to ZnGa2O4: Mn2+ nanophosphors. Journal of the Electrochemical Society, 156(5), J97–J101.10.1149/1.3083225Search in Google Scholar

eISSN:
0868-8257
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics