Accès libre

Effect of in Doping on the ZnO Powders Morphology and Microstructure Evolution of ZnO:In Ceramics as a Material for Scintillators

À propos de cet article

Citez

1. Klingshirn, C. F., Meyer, B. K., Waag, A., & Hoffmann, A. (2010). Zinc oxide. From fundamental properties towards novel applications. Springer Series in Materials Science. 120. Springer, Heidelberg.10.1007/978-3-642-10577-7Search in Google Scholar

2. Ozgur, U., Alivov, Y I., Liu, C., Teke A., Reshchikov, M. A., Dogan, S.... Morkoc, H. (2005). A comprehensive review of ZnO materials and devices. J. App.Phys. 98, 04301l.10.1063/1.1992666Search in Google Scholar

3. Zhang, Z., Du, J., Li, B., Zhang, S., Hong, M., Zhang, X. …Zhang, Y. (2017). Ultrathin strain gated field effect transistor based on In-doped ZnO nanobelts. APL Materials 5, 086111.10.1063/1.4986098Search in Google Scholar

4. Lu, K. (2008). Sintering of nanoceramics. Intern. Mater. Rev. 53, 21–38.10.1179/174328008X254358Search in Google Scholar

5. Polyakov, B., Dorogin, L., Lohmus, A., Romanov, A., & Lohmus, R. (2012). In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope. Appl. Surf. Sci. 258, 3227–3231.10.1016/j.apsusc.2011.11.069Search in Google Scholar

6. Wilson, H. F., Tang, C., & Barnard, A. S. (2016). Morphology of zinc oxide nanoparticles and nanowires: Role of surface and edge energies. Phys. Chem. C, 120, 9498.10.1021/acs.jpcc.6b01479Search in Google Scholar

7. Huber, S. E., Hellström, M., Probst, M., Hermansson, K., & Broqvist, P. (2014). Large-scale SCC-DFTB calculations of reconstructed polar ZnO surfaces. Surf. Sci. 628, 50–61.10.1016/j.susc.2014.05.001Search in Google Scholar

8. Wilkinson, J., Ucer, K.B., & Williams, R.T. (2005). The oscillator strength of extended exciton states and possibility for very fast scintillators. Nucl. Instr. and Methods. Phys. Res. A. 537, 66–70.10.1016/j.nima.2004.07.236Search in Google Scholar

9. Rodnyi, P. A., Chernenko, K. A., Gorokhova, E. I., Kozlovskii, S.S., Khanin, V.M., & Khodyuk, I.V. (2012). Novel scintillation material – ZnO transparent ceramics. IEEE Trans. Nucl. Sci. 59(5), 2152–2155.10.1109/TNS.2012.2189896Search in Google Scholar

10. Kelly, J. P., & Graeve, O A. (2013). Effect of powder characteristics on nanosintering sintering mechanisms of convention nanodensification and field assisted processes. Sintering, 57–95.10.1007/978-3-642-31009-6_4Search in Google Scholar

11. Muktepavela, F., Zabels, R., Sursajeva, V., Grigorjeva, L., & Kundzins, K. (2012). The role of nanopowder particle surfaces and grain boundary defects in the sintering of ZnO ceramics. IOP Conf. Ser. Mater. Sci. Eng. 38, 012016.10.1088/1757-899X/38/1/012016Search in Google Scholar

12. Muktepavela, F., Grigorjeva, L., Kundzins, K., Gorokhova, E., & Rodnyi, P. (2015). Structure, nanohardness and photoluminescence of ZnO ceramics based on nanopowders. Phys. Scr. 90 094018.10.1088/0031-8949/90/9/094018Search in Google Scholar

13. Yanagida, T., Fujimoto, Y., Yoshikawa, A., & Maeo, S. (2010). Scintillation properties of In-doped ZnO with different In concentrations. IEEE Trans. Nucl. Sci. 57(3), 1325–1328.10.1109/TNS.2009.2035120Search in Google Scholar

14. Gorokhova, E. I., Eron’ko, S. B, Kul’kov, A., Oreshchenko, E. A., Simonova, K. L., Chernenko, K. A.... Wieczorek, H. (2015). Development and study of ZnO:In optical scintillation ceramic. J. Opt. Technol. 82(12), 837–842.10.1364/JOT.82.000837Search in Google Scholar

15. Sohn, J. I., Hong, W-K, Lee, S., Lee, S., Ku, J., Park, Y. J. ... Kim, J.M. (2014). Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity. Sci. Rep.4, 5680.10.1038/srep05680409556625017476Search in Google Scholar

16. Klinger, L., & Rabkin, E. (2010). Sintering of fully faceted crystalline particles. Intern. J. Mater.Res., 101 (1), 75–83.10.3139/146.110257Search in Google Scholar

17. Yoon, Y., & Cho, Y., K. (2005) Roughening transition of grain boundaries in metals and oxides. J. Mater. Sci., 40, 861–870.10.1007/s10853-005-6502-7Search in Google Scholar

18. Moriga, T., Edwards, D.D., Mason, T.O., Palmer, G.B., Kenneth Poeppelmeier, R., Schindler, J.L. … Nakabayashi, I. (1998). Phase Relationships and Physical Properties of Homologous Compounds in the Zinc Oxide–Indium Oxide System. J. Am. Ceram. Soc., 81, 5, 1310-1316.10.1111/j.1151-2916.1998.tb02483.xSearch in Google Scholar

19. Tang, C., Spencer, M.J. S., & Barnard, A. S. (2014). Activity of ZnO polar surfaces: An insight from surface energies. Phys. Chem. Chem. Phys., 16, 22139–22144.10.1039/C4CP03221GSearch in Google Scholar

20. Muktepavela, F., Bakradze, G., & Stolyarova, S. (2006). Effect of mechanoactivation on interfacial interaction in metal/oxide systems. Defect and Diffusion Forum, 249, 263–268.10.4028/www.scientific.net/DDF.249.263Search in Google Scholar

21. Cahn, R. W. (ed.). (1965). Physical Metallurgy. 8. Amsterdam: North Holland.Search in Google Scholar

22. Oba, F., Sato, Y., Yamamoto, T., Ohta, H., Hosono, H., & Ikuhara, Y. (2005). Effect of boundary plane on the atomic structure of [0001] Σ 7 tilt grain boundaries in ZnO. J. Mater. Sci. 40, 3067.10.1007/s10853-005-2666-4Search in Google Scholar

23. Fan, H. J., Fuhrmann, B., Scholz, R., Himcinschi, C., Berger, A., Leipner, H. … Zachatias, M. (2006). Vapour-transport-deposition growth of ZnO nanostructures: Switch between c-cxial wires and a-axial belts by indium doping. Nanotechnology, 17, 231–239.10.1088/0957-4484/17/11/S02Search in Google Scholar

24. Sursaeva, V, Gornakova, A., & Muktepavela, F. (2014). Grain boundary ridges slow down grain boundary motion: In-situ observation. Mater. Lett. 124, 241735.10.1016/j.matlet.2014.03.037Search in Google Scholar

25. Chen, I-W, & Wang, X.-H. (2000). Sintering dense nanocrystalline oxide without final stage grain growth. Nature, 404, 168–171.10.1038/3500454810724165Search in Google Scholar

eISSN:
0868-8257
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics