Accès libre

Numerical Study of Flow-Induced Vibrations of Multiple Flexibly-Mounted Cylinders in Triangular Array

   | 30 nov. 2018
À propos de cet article

Citez

1. Vincent, B.T., Hassan, M.A., & Rogers, R.J. (2009). A probabilistic assessment technique applied to a cracked heat exchanger tube subjected to flow-induced vibration. Journal of Pressure Vessel Technology, 131, 031305-1-6. DOI: 10.1115/1.310998910.1115/1.3109989Open DOISearch in Google Scholar

2. Weaver, D.S., & Fitzpatrick, J.A. (1988). A review of cross-flow induced vibrations in heat exchanger tube arrays. Journal of Fluids and Structures, 2, 73–93. DOI: 10.1016/S0889-9746(88)90137-510.1016/S0889-9746(88)90137-5Open DOISearch in Google Scholar

3. Khalifa, A., Weaver, D., & Ziada, S. (2012). A single flexible tube in a rigid array as a model for fluidelastic instability in tube bundles. Journal of Fluids and Structures, 34, 14–32. DOI: 10.1016/j.jfluidstructs.2012.06.00710.1016/j.jfluidstructs.2012.06.007Open DOISearch in Google Scholar

4. de Pedro, B., Parrondo, J., Meskell, C., & Oro, J. F. (2016). CFD modelling of the cross-flow through normal triangular tube arrays with one tube undergoing forced vibrations or fluidelastic instability. Journal of Fluids and Structures, 64, 67–86. DOI: 10.1016/j.jfluidstructs.2016.04.00610.1016/j.jfluidstructs.2016.04.006Open DOISearch in Google Scholar

5. Charreton, C., Béguin, C., Yu, K.R., & Étienne, S. (2015). Effect of Reynolds number on the stability of a single flexible tube predicted by the quasi-steady model in tube bundles. Journal of Fluids and Structures, 56, 107–123. DOI: 10.1016/j.jfluidstructs.2015.05.00410.1016/j.jfluidstructs.2015.05.004Open DOISearch in Google Scholar

6. Mahon, J., & Meskell. C. (2013). Estimation of the time delay associated with damping controlled fluidelastic instability in a normal triangular tube array. Journal of Pressure Vessel Technology, 135, 030903-1-7. DOI: 10.1115/1.402414410.1115/1.4024144Open DOISearch in Google Scholar

7. Price, S.J. (1995). A review of theoretical models for fluidelastic instability of cylinder arrays in cross-flow. Journal of Fluids and Structures, 9, 463–518. DOI: 10.1006/jfls.1995.102810.1006/jfls.1995.1028Open DOISearch in Google Scholar

8. Andjelić, M., Austermann, R., & Popp, K. (1992). Multiple stability boundaries of tubes in a normal triangular cylinder array. Journal of Pressure Vessel Technology, 114, 336–343. DOI: 10.1115/1.292904910.1115/1.2929049Search in Google Scholar

9. Khalvatti, A., Mureithi, N.W., & Pettigrew, M.J. (2010). Effect of preferential flexibility direction on fluidelastic instability of a rotated triangular tube bundle. Journal of Pressure Vessel Technology, 132, 041309-1-14. DOI: 10.1115/1.400218110.1115/1.4002181Search in Google Scholar

10. Hassan, M., Gerber, A., & Omar, H. (2010). Numerical estimation of fluidelastic instability in tube arrays. Journal of Pressure Vessel Technology, 132, 041307-1-11. DOI: 10.1115/1.400211210.1115/1.4002112Search in Google Scholar

11. Ibrahim, R.A. (2011). Mechanics of pipes conveying fluids - Part II: Applications and fluidelastic problems. Journal of Pressure Vessel Technology, 133, 024001-1-30. DOI: 10.1115/1.400127010.1115/1.4001270Open DOISearch in Google Scholar

12. Jafari, H.H., & Dehkordi, B.G. (2013). Numerical prediction of fluid-elastic instability in normal triangular tube bundles with multiple flexible circular cylinders. Journal of Pressure Vessel Technology, 135, 031102-1-14. DOI: 10.1115/1.402329810.1115/1.4023298Open DOISearch in Google Scholar

13. Holzmann, T. (2017). Mathematics, numerics, derivations and OpenFOAM (4th ed.). Leoben: Holzmann CFD.Search in Google Scholar

14. Kim, S.N., & Jung, S.Y. (2000). Critical velocity of fluidelastic vibration in a nuclear fuel bundle. Korean Society of Mechanical Engineers International Journal, 14(8), 816–822.10.1007/BF03184468Search in Google Scholar

15. Weaver, D.S., & El-Kashlan, M. (1981). On the number of tube rows required to study cross-flow induced vibrations in tube banks. Journal of Sound and Vibration, 75(2), 265–273. DOI: 10.1016/0022-460X(81)90344-8.10.1016/0022-460X(81)90344-8Open DOISearch in Google Scholar

16. Upnere, S., Jekabsons, N., & Dementjevs, S. (2016). Analysis of cross-flow induced vibrations in staggered arrangement of multi-cylinder system. In 5th European Seminar on Computing, 5–10 June 2016 (pp. 225). Pilsen, Czech Republic.Search in Google Scholar

17. Lam, K., Jiang, G.D., Liu, Y., & So, R.M.C. (2006). Simulation of cross-flow-induced vibration of cylinder arrays by surface vorticity method. Journal of Fluids and Structures, 22, 1113–1131. DOI: 10.1016/j.jfluidstructs.2006.03.00410.1016/j.jfluidstructs.2006.03.004Open DOISearch in Google Scholar

eISSN:
0868-8257
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Physics, Technical and Applied Physics