À propos de cet article

Citez

[1] Luptak, V., Gašparík, J. & Chovancová, M. (2017). Proposal for evaluating a connection quality within transport networks. In MATEC Web of Conferences: 18th International Scientific Conference on LOGI, 19 October 2017 (art no. 00033), České Budějovice, Czech Republic. DOI:10.1051/matecconf/201713400033. Search in Google Scholar

[2] Ližbetin, J., Vejs, P., Stopka, O. & Cempírek, V. (2016). The significance of dynamic detection of the railway vehicles weight. Nase More, 63(3), 156-160. DOI:10.17818/NM/2016/SI15. Search in Google Scholar

[3] Ižvolt, L., Hodas, S. & Šestáková, J. (2015). Railway construction 1: design, construction and reconstruction of railway lines and stations (1st ed.). Zilina, Slovakia: University of Zilina. Search in Google Scholar

[4] Hlatká, M., Kampf, R., Korec, K., Kalinová, E. & Gross, P. (2021). Failure analysis and identification of causes of SRC system malfunctions – case study. Engineering Failure Analysis, 127. DOI: 10.1016/j.engfailanal.2021.105574. Search in Google Scholar

[5] Fedorko, G., Molnár, V., Blaho, P., Gašparík, J. & Zitrický, V. (2020). Failure analysis of cyclic damage to a railway rail – A case study. Engineering Failure Analysis, 116. DOI: 10.1016/j.engfailanal.2020.104732. Search in Google Scholar

[6] Šestaková, J., Ižvolt, L. & Mečár, M. (2019). Degradation-prediction models of the railway track quality. Civil and Environmental Engineering 15(2), 115-124. DOI:10.2478/cee-2019-0015. Search in Google Scholar

[7] Stopka, O., Stopková, M., Ľupták, V. & Krile, S. (2020). Application of the chosen multi-criteria decision-making methods to identify the autonomous train system supplier. Transport Problems 15(2), 45-57. DOI:10.21307/TP-2020-019. Search in Google Scholar

[8] Kulka, J., Mantic, M., Fedorko, G. & Molnar, V. (2020). Failure analysis concerning causes of wear for bridge crane rails and wheels. Engineering Failure Analysis 110, art. num. 104441. DOI: 10.1016/j.engfailanal.2020.104441. Search in Google Scholar

[9] Široký, J., Nachtigall, P., Gašparík, J. & Čáp, J. (2021). Calculation model of railway capacity price in the Czech Republic. Promet - Traffic - Traffico 33(1), 91-102. DOI:10.7307/ptt.v33i1.3544. Search in Google Scholar

[10] Xie, J., Huang, J., Zeng, C., Jiang, S. & Podlich, N. (2020). Systematic literature review on data-driven models for predictive maintenance of railway track: Implications in geotechnical engineering. Geosciences (Switzerland) 10(11), 1-24. DOI:10.3390/geosciences10110425. Search in Google Scholar

[11] Lyngby, N. (2009). Railway track degradation: Shape and influencing factors. International Journal of Performability Engineering 5(2), 177-186. Search in Google Scholar

[12] Jamshidi, A., Hajizadeh, S., Su, Z., Naeimi, M., Núñez, A., Dollevoet, R. & Li, Z. (2018). A decision support approach for condition-based maintenance of rails based on big data analysis. Transportation Research Part C: Emerging Technologies 95, 185-206. DOI: 10.1016/j.trc.2018.07.007. Search in Google Scholar

[13] Sheeran, R. & Kay, M. (2015). A Short Guide to Network Rail. London, UK: National Audit Office. Search in Google Scholar

[14] Połom, M., Tarkowski, M., Puzdrakiewicz, K. & Abramović, B. (2018). Urban transformation in the context of rail transport development: The case of a newly built railway line in Gdańsk (Poland). Journal of Advanced Transportation. DOI: 10.1155/2018/1218041. Search in Google Scholar

[15] Gašparík, J., Abramović, B. & Halás, M. (2015). New graphical approach to railway infrastructure capacity analysis. Promet - Traffic - Traffico 27(4), 283-290. DOI: 10.7307/ptt.v27i4.1701. Search in Google Scholar

[16] Šperka, A., Vojtek, M., Široký, J. & Čamaj, J. (2020). Improvement of the last mile-specific issues in railway freight transport. Sustainability (Switzerland) 12(23), 1-18. DOI: 10.3390/su122310154. Search in Google Scholar

[17] Szendro, G., Csete, M. & Torok, A. (2012). Unbridgeable gap between transport policy and practice in Hungary. Journal of Environmental Engineering and Landscape Management 20(2), 104-109. DOI: 10.3846/16486897.2012.660881. Search in Google Scholar

[18] Lakatos, A. & Mándoki, P. (2020). Analytical, logit model-based examination of the Hungarian regional parallel public transport system. Promet - Traffic - Traffico 32(3), 361-369. DOI: 10.7307/ptt.v32i3.3307. Search in Google Scholar

[19] Kanis, J., Zitrický, V., Hebelka, V., Lukáč, P. & Kubín, M. (2021). Innovative diagnostics of the railway track superstructure. Transportation Research Procedia 53, 138-145. DOI: 10.1016/j.trpro.2021.02.017. Search in Google Scholar

[20] Kanis, J., Zitrický, V. & Hebelka, V. (2021). Innovative diagnostics of the track superstructure. Svet dopravy 4(1), 34-44. Search in Google Scholar

[21] Kanis, J. (2020). Detailed summary report of the company’s basic research SMARTRONIC, s.r.o. for the evaluation period 01. 01. 2019 – 31. 12. 2019. Bratislava, 2020. Search in Google Scholar

[22] Ľupták, V., Bartuška, L. & Hanzl, J. (2018). Assessment of connection quality on transport networks applying the empirical models in traffic planning: A case study. In Transport Means - Proceedings of the International Conference, October 2018 (pp. 236-240), Trakai, Lithuania. Search in Google Scholar

[23] Hřebíček, Z., Lupták, V. & Stopková, M. (2018). Determining lateral resistance of sleeper in railway ballast. In MATEC Web of Conferences: 10th International Scientific Conference Horizons of Railway Transport, 11 October 2018 (art. no. 235). Strečno, Slovak republic, DOI: 10.1051/matecconf/201823500007. Search in Google Scholar

eISSN:
2336-3037
Langue:
Anglais