À propos de cet article

Citez

[1] Nepovimova E., Kuca K. Chapter 1 - History of toxicology: from killers to healers. In: Gupta RCBT-H of T of CWA (Third E, editor. Handb. Toxicol. Chem. Warf. Agents. Third Edit, Boston: Academic Press; 2020, p. 3–15.10.1016/B978-0-12-819090-6.00001-5 Search in Google Scholar

[2] Chauhan S., Chauhan S., D’Cruz R., Faruqi S., Singh K.K., Varma S., et al. Chemical warfare agents. Environ Toxicol Pharmacol 2008; 26:113–22.10.1016/j.etap.2008.03.003 Search in Google Scholar

[3] Fitzgerald G.J. Chemical Warfare and Medical Response During World War I. Am J Public Health 2008; 98:611–25.10.2105/AJPH.2007.111930 Search in Google Scholar

[4] Picard B., Chataigner I., Maddaluno J., Legros J. Introduction to chemical warfare agents relevant simulants and modern neutralisation methods. Org Biomol Chem 2019; 17:6528–37.10.1039/C9OB00802K Search in Google Scholar

[5] Yar M., Hashmi M.A., Khan A., Ayub K. Carbon nitride 2-D surface as a highly selective electrochemical sensor for V-series nerve agents. J Mol Liq 2020; 311:113357.10.1016/j.molliq.2020.113357 Search in Google Scholar

[6] Arduini F., Scognamiglio V., Moscone D., Palleschi G. Electrochemical Biosensors for Chemical Warfare Agents. In: Nikolelis DP, Nikoleli G-P, editors. Biosens. Secur. Bioterrorism Appl., Cham: Springer International Publishing; 2016, p. 115–39.10.1007/978-3-319-28926-7_6 Search in Google Scholar

[7] Epure G., Grigoriu N., Moșteanu D. Detecţia şi identificarea agenţilor chimici de războ. Sibiu: Editura Academiei Forţelor Terestre; 2017. Search in Google Scholar

[8] Stoian I.–A., Iacob B.-C., Prates Ramalho J.P., Marian I.O., Chiș V., Bodoki E., et al. A chiral electrochemical system based on l-cysteine modified gold nanoparticles for propranolol enantiodiscrimination: Electroanalysis and computational modelling. Electrochim Acta 2019; 326:134961.10.1016/j.electacta.2019.134961 Search in Google Scholar

[9] Stoian I.-A., Iacob B.-C., Dudaș C.-L., Barbu-Tudoran L., Bogdan D., Marian I.O., et al. Biomimetic electrochemical sensor for the highly selective detection of azithromycin in biological samples. Biosens Bioelectron 2020; 155:112098.10.1016/j.bios.2020.112098 Search in Google Scholar

[10] Eggins B.R. CHEMICAL SENSORS AND BIOSENSORS. West Sussex, England: John Wiley & Sons, Ltd; 2002. Search in Google Scholar

[11] Sandulescu R., Cristea C., Bodoki E., Oprean R. Recent advances in the analysis of bioactive compounds based on molecular recognition. In: Apetrei C, editor. Front. Bioact. Compd. 1st ed., Galaty: Bentham Science Publishers – Sharjah, UAE; 2016, p. 69–126.10.2174/9781681083414116010006 Search in Google Scholar

[12] Li Z., Mo Z., Meng S., Gao H., Niu X., Guo R. The construction and application of chiral electrochemical sensors. Anal Methods 2016; 8:8134–40.10.1039/C6AY02431A Search in Google Scholar

[13] Brett C.M.A., Oliveira-Brett A.M. Electrochemical sensing in solution—origins, applications and future perspectives. J Solid State Electrochem 2011;15:1487–94.10.1007/s10008-011-1447-z Search in Google Scholar

[14] Brett C.M.A. Electrochemical sensors for environmental monitoring. Strategy and examples. Pure Appl Chem 2001; 73:1969–77.10.1351/pac200173121969 Search in Google Scholar

[15] Arduini F. Nanomaterials and Cross-Cutting Technologies for Fostering Smart Electrochemical Biosensors in the Detection of Chemical Warfare Agents. Appl Sci 2021;11.10.3390/app11020720 Search in Google Scholar

[16] Guilbault G.G., Kramer D.N., Cannon P.L. Electrical Determination of Organophosphorous Compounds. Anal Chem 1962;34:1437–9.10.1021/ac60191a027 Search in Google Scholar

[17] Arduini F., Scognamiglio V., Moscone D., Palleschi G. Electrochemical Biosensors for Chemical Warfare Agents BT - Biosensors for Security and Bioterrorism Applications. In: Nikolelis DP, Nikoleli G-P, editors., Cham: Springer International Publishing; 2016, p. 115–39.10.1007/978-3-319-28926-7_6 Search in Google Scholar

[18] Cinti S., Minotti C., Moscone D., Palleschi G., Arduini F. Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosens Bioelectron 2017; 93:46–51.10.1016/j.bios.2016.10.091 Search in Google Scholar

[19] Anzai J. Chapter 62 - Biosensors for the Detection of OP Nerve Agents. In: Gupta RCBT-H of T of CWA (Second E, editor., Boston: Academic Press; 2015, p. 925–34.10.1016/B978-0-12-800159-2.00062-2 Search in Google Scholar

[20] Lee W.E., Thompson H.G., Hall J.G., Bader D.E. Rapid detection and identification of biological and chemical agents by immunoassay, gene probe assay and enzyme inhibition using a silicon-based biosensor. Biosens Bioelectron 2000; 14:795–804.10.1016/S0956-5663(99)00059-7 Search in Google Scholar

[21] Lee J.H., Park J.Y., Min K., Cha H.J., Choi S.S., Yoo Y.J. A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens Bioelectron 2010; 25:1566–70.10.1016/j.bios.2009.10.01320093002 Search in Google Scholar

[22] Wang L., Sun Y. Engineering organophosphate hydrolase for enhanced biocatalytic performance: A review. Biochem Eng J 2021; 168:107945.10.1016/j.bej.2021.107945 Search in Google Scholar

[23] Laothanachareon T., Champreda V., Sritongkham P., Somasundrum M., Surareungchai W. Cross-linked enzyme crystals of organophosphate hydrolase for electrochemical detection of organophosphorus compounds. World J Microbiol Biotechnol 2008; 24:3049.10.1007/s11274-008-9851-y Search in Google Scholar

[24] Chen A., Du D., Lin Y. Highly Sensitive and Selective Immuno-Capture/Electrochemical Assay of Acetylcholinesterase Activity in Red Blood Cells: A Biomarker of Exposure to Organophosphorus Pesticides and Nerve Agents. Environ Sci Technol 2012; 46:1828–33.10.1021/es202689u22208309 Search in Google Scholar

[25] Du D., Wang J., Wang L., Lu D., Lin Y. Integrated Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Exposure to Organophosphorus Agents. Anal Chem 2012;84:1380–5.10.1021/ac202391w22243414 Search in Google Scholar

[26] Cárdenas Riojas A.A., Wong A., Planes G.A., Sotomayor M.D.P.T., La Rosa-Toro A., Baena-Moncada A.M. Development of a new electrochemical sensor based on silver sulfide nanoparticles and hierarchical porous carbon modified carbon paste electrode for determination of cyanide in river water samples. Sensors Actuators B Chem 2019; 287:544–50.10.1016/j.snb.2019.02.053 Search in Google Scholar

[27] Zhang H. Electrochemical Sensor Based on Silver Nanoparticles/Multi-walled Carbon Nanotubes Modified Glassy Carbon Electrode to Detect Cyanide in Food Products. Int J Electrochem Sci 2020:3434–44.10.20964/2020.04.32 Search in Google Scholar

[28] Lindsay A.E., O’Hare D. The development of an electrochemical sensor for the determination of cyanide in physiological solutions. Anal Chim Acta 2006; 558:158–63.10.1016/j.aca.2005.11.036 Search in Google Scholar

[29] Colozza N., Kehe K., Popp T., Steinritz D., Moscone D., Arduini F. Paper-based electrochemical sensor for on-site detection of the sulphur mustard. Environ Sci Pollut Res 2021; 28:25069–80.10.1007/s11356-018-2545-629934830 Search in Google Scholar

[30] Singh V.V., Nigam A.K., Boopathi M., Pandey P., Ganesan K., Jain R., et al. In situ electrocatalytic reduction of chemical warfare agent sulfur mustard by palladium modified electrode and its sensing application. Sensors Actuators B Chem 2011; 160:840–9.10.1016/j.snb.2011.08.070 Search in Google Scholar

[31] Colozza N., Kehe K., Dionisi G., Popp T., Tsoutsoulopoulos A., Steinritz D., et al. A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosens Bioelectron 2019; 129:15–23.10.1016/j.bios.2019.01.00230682684 Search in Google Scholar

[32] Virji S., Kojima R., Fowler J.D., Villanueva J.G., Kaner R.B., Weiller B.H. Polyaniline nanofiber composites with amines: Novel materials for phosgene detection. Nano Res 2009; 2:135–42.10.1007/s12274-009-9011-1 Search in Google Scholar