1. bookVolume 66 (2022): Edition 4 (December 2022)
Détails du magazine
License
Format
Magazine
eISSN
2450-8608
Première parution
30 Mar 2016
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Detection and antimicrobial resistance of Enterobacteriaceae other than Escherichia coli in raccoons from the Madrid region of Spain

Publié en ligne: 04 Nov 2022
Volume & Edition: Volume 66 (2022) - Edition 4 (December 2022)
Pages: 565 - 569
Reçu: 13 May 2022
Accepté: 18 Oct 2022
Détails du magazine
License
Format
Magazine
eISSN
2450-8608
Première parution
30 Mar 2016
Périodicité
4 fois par an
Langues
Anglais
Introduction

The majority of Enterobacteriaceae genera besides Escherichia are usually opportunistic nosocomial pathogens and cause a wide spectrum of human infections (9). The status of antimicrobial resistance among Enterobacteriaceae other than Escherichia in wild animals is poorly understood because these genera are rarely isolated. In addition, studies testing for antimicrobial resistance in isolates of these genera from wild animals are scarce (5, 7, 10, 13).

Raccoons can carry a variety of enteric bacteria in their faeces, such as pathogenic and antimicrobial-resistant E. coli, which can infect humans and livestock and may represent a public health risk (14). However, to our knowledge, the presence of non-E. coli Enterobacteriaceae in raccoons has not been previously studied. Raccoons are an invasive alien species widely distributed in the Madrid region of Spain and live in close proximity to humans (6). As raccoons are considered both an ecological and a health risk (6, 14), the government of the Madrid region authorised a control programme that involved their capture, removal and euthanasia (14).

In a previous work, we studied the presence of zoonotic E. coli isolates and antimicrobial-resistant E. coli in faecal samples from raccoons in the Madrid region (14). These samples were used in this study with the aim of examining the species distribution of Enterobacteriaceae other than E. coli carried by the raccoons of the region and to investigate the presence of antimicrobial resistance in isolates of these species.

Material and Methods

The sites, trapping and sample collection used in this study have been described previously (6). Briefly, 83 faecal samples from apparently healthy raccoons (46 male and 37 female) were collected between October 2017 and March 2019. Trapping was carried out at nine sites in primarily periurban areas in the Madrid region (14). Following capture, the raccoons were weighed and then euthanised by veterinarians from the regional administration. Immediately after euthanasia, whole faecal samples were collected directly from the rectum, placed in sterile plastic bottles, and kept refrigerated until submitted to the laboratory the day after sampling. Faecal samples were plated on MacConkey agar and incubated overnight. After incubation, up to five colonies were selected from each sample. Isolates of E. coli and Enterobacteriaceae other than E. coli were initially differentiated by biochemical tests, including hydrogen sulphide, citrate, urease and indole. Enterobacteriaceae isolates other than E. coli were sub-cultured on Columbia agar overnight and identified by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with a Bruker MALDI Biotyper system (Bruker Daltonik, Bremen, Germany) (17) and sequencing of their complete 16S ribosomal RNA (rRNA) genes (21). The 16S rRNA sequences were compared with those of other Gram-negative species available in the GenBank database, using the EzTaxon server (http:/eztaxone.ezbiocloud.net/) (23).

Antimicrobial testing was performed using the disc-diffusion method and according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI) (3). The following 14 antimicrobials belonging to 6 different classes were tested: ampicillin, amoxicillin-clavulanic acid, cefoxitin and ceftriaxone (β-lactams); streptomycin, kanamycin, amikacin and gentamicin (aminoglycosides); tetracycline (tetracyclines); chloramphenicol (phenicols); sulphafurazole and trimethoprim-sulphamethoxazole (sulfonamides); and nalidixic acid and ciprofloxacin (quinolones). All antimicrobial susceptibility discs were provided by Oxoid (Basingstoke, UK). Escherichia coli ATCC 25922 was used as the control strain. The growth inhibition area of each isolate was measured and then each isolate was classified as susceptible, intermediate or resistant based on the breakpoints provided by the CLSI for Enterobacteriaceae (Table 1) (3).

Interpretive criteria for Enterobacteriaceae using disc diffusion susceptibility testing reported as inhibition zone diameters (mm)

Antimicrobial agent Disc (μg) Susceptible Intermediate Resistant
Ampicillin 10 ≥17 14–16 ≤13
Amoxicillin-clavulanic acid 30 (20/10) ≥18 14–17 ≤13
Cefoxitin 30 ≥18 15–17 ≤14
Ceftriaxone 30 ≥23 20–22 ≤19
Streptomycin 10 ≥15 12–14 ≤11
Kanamycin 30 ≥18 14–17 ≤13
Amikacin 30 ≥17 15–16 ≤14
Gentamicin 10 ≥15 13–14 ≤12
Tetracycline 30 ≥15 12–14 ≤11
Chloramphenicol 30 ≥18 13–17 ≤12
Sulphafurazole 300 ≥17 13–16 ≤12
Trimethoprim-sulphamethoxazole 25 (1.25/23.75) ≥16 11–15 ≤10
Nalidixic acid 30 ≥19 14–18 ≤13
Ciprofloxacin 5 ≥26 22–25 ≤21
Results

A total of 12 Enterobacteriaceae isolates other than E. coli were isolated from 8.4% of the animals studied (n=7). The isolates were identified as Citrobacter freundii (1 isolate), C. gillenii (3 isolates), C. murliniae (1 isolate), C. portucalensis (2 isolates), Enterobacter hormaechei subsp. hoffmannii (1 isolate), Hafnia paralvei (2 isolates) and Raoultella ornithinolytica (2 isolates), the Citrobacter genus being the most frequently identified (58.3%, 7/12). In our study, MALDI-TOF MS identification was successful only to the genus level and conclusive identification at the species level was possible only after sequencing the 16S rRNA gene (Table 2).

Identification by sequencing of the 16S ribosomal RNA (16S rRNA) gene and matrix-assisted laser desorption/ionisation–time-of-flight mass spectrometry (MALDI-TOF MS) of 12 Enterobacteriaceae isolates other than E. coli from raccoons in the Madrid region of Spain

Isolate reference Sequencing of the 16S rRNA gene MALDI-TOF MS
Identification Similarity (%) First identification (score value) a Second identification (score value) a Consistency b
23147c Enterobacter hormaechei subsp. hoffmannii 98.8 Enterobacter cloacae (2.296) Escherichia coli (2.254) D
23167b Citrobacter freundii 98.8 Citrobacter braakii (2.458) Citrobacter freundii (2.337) C
23353b Citrobacter portucalensis 99.3 Citrobacter braakii (2.467) Citrobacter freundii (2.282) D
23375a Citrobacter portucalensis 99.5 Citrobacter freundii (2.289) Citrobacter braakii (2.261) D
23375c Raoultella ornithinolytica 99.9 Raoultella ornithinolytica (2.399) Raoultella planticola (2.301) B
23380a Citrobacter murliniae 99.2 Citrobacter braakii (2.397) Citrobacter freundii (2.154) D
23380b Hafnia paralvei 99.1 Hafnia alvei (2.292) Dickeya chrysanthemi (1.504) D
23380c Hafnia paralvei 99.1 Hafnia alvei (2.292) Dickeya chrysanthemi (1.504) D
23381a Raoultella ornithinolytica 99.7 Raoultella ornithinolytica (2.383) Raoultella planticola (2.245) B
23381c Citrobacter gillenii 99.0 Citrobacter gillenii (2.460) Citrobacter freundii (2.122) B
26650a Citrobacter gillenii 99.5 Citrobacter gillenii (2.408) Citrobacter freundii (2.140) B
26650c Citrobacter gillenii 99.5 Citrobacter gillenii (2.408) Citrobacter freundii (2.140) B

a – First and second identification best matches with their respective score values provided by the Biotyper identification list

b – Consistency ranking list of the first two best matches: B, the correct species is the first ranked but a different species is in the second rank also with a score value ≥ 2.000; C, the first and second matches have score values ≥2.000 but the correct species is the second ranked; D, the first matches have score values > 2.000 and the second matches have scores > or <2.000, but the correct species is neither the first nor second ranked

The Bruker MALDI Biotyper system gives more than one probable identification result with different identification score values. Generally, the score values are higher in the first identification and go down in the following options. As can be seen in Table 2, the score values in the first identification option are higher than in the second one. In our experience, an identification based exclusively on the score values of the first identification option is not always the most accurate; it is helpful to also consider the results of the second identification option (17). For this reason, we evaluated the consistency of MALDI-TOF identification results taking into consideration the two best scores provided by the Bruker Biotyper in MALDI-TOF MS resolved to consistency categories A–D. Category A signifies that the correct species is the unique species with a score value ≥2.000; category B that the correct species is the first ranked but a different species is in the second rank also with a score value ≥2.000; C that the first and second matches have score values ≥2.000 but the correct species is the second ranked; and D that the first matches have score values >2.000 and the second matches have scores > or <2.000, but the correct species is neither the first nor second ranked. The isolates within the consistency category A are considered accurately identified, those within categories B and C are considered inconclusively identified and those within the D category are considered misidentified. Applying this criterion, no isolate was accurately identified, and most isolates were inconclusively elucidated as to their species or were misidentified (Table 2). All isolates but one were resistant to at least one antimicrobial, and almost half of the isolates (5/12) were resistant to three antimicrobials (Table 3). Resistance to ampicillin (83.3%, 10/12), amoxicillin-clavulanic acid (50%, 6/12) and cefoxitin (33.3%, 4/12) was the most frequent (Table 3).

Antimicrobial susceptibility of 12 Enterobacteriaceae isolates other than E. coli from raccoons in the Madrid region of Spain

Isolate reference Identification Susceptibility to:
AMP AMC FOX ST K SF NA CIP
23147c Enterobacter hormaechei subsp. hoffmannii R R R S S I S S
23167b Citrobacter freundii R R R S S I S S
23353b Citrobacter portucalensis R R R S S I I I
23375a Citrobacter portucalensis R R R S S S S S
23375c Raoultella ornithinolytica R S S R S S R S
23380a Citrobacter murliniae S S S I S I S S
23380b Hafnia paralvei R R S I S S S S
23380c Hafnia paralvei R R S I S S S S
23381a Raoultella ornithinolytica R S S S S I S I
23381c Citrobacter gillenii I S S S R R S I
26650a Citrobacter gillenii R S S S S I S S
26650c Citrobacter gillenii R S S S S I S S

AMP – ampicillin; AMC – amoxicillin-clavulanic acid; FOX – cefoxitin; ST – streptomycin; K – kanamycin; SF – sulphafurazole; NA – nalidixic acid; CIP – ciprofloxacin; S – susceptible; I – intermediate; R – resistant. All isolates were susceptible to ceftriaxone, amikacin, gentamicin, tetracycline, chloramphenicol and trimethoprim-sulphamethoxazole

Discussion

To our knowledge, this is the first report analysing the presence of non-E. coli Enterobacteriaceae in raccoon faeces. Matrix-assisted laser desorption/ ionisation–time-of-flight mass spectrometry has been used before to identify non-E. coli Enterobacteriaceae (9, 11). The lower performance of the MALDI-TOF MS technique observed in our results can be explained by the omission of some of the species identified from the Biotyper database (for example, H. paralvei or C. portucalensis) or the difficulty in distinguishing different Citrobacter species due to the very similar spectra generated, which is congruent with the high similarity of their 16S rRNA gene sequences (2, 18). These results suggest that identification of non-E. coli Enterobacteriaceae obtained by 16S rRNA gene sequencing is more reliable than identification obtained by MALDI-TOF MS.

Citrobacter spp. are opportunistic human pathogens which can cause nosocomial infections, sporadic infections and outbreaks, with C. freundii being the most commonly isolated (12). In animals, Citrobacter spp. have been associated with septicaemia in several species (4, 10, 15). Categorised alongside these Citrobacter spp., E. hormaechei, H. paralvei and R. ornithinolytica are also considered opportunistic pathogens but are infrequent ones in both humans and animals (1, 8, 16, 19, 22). In animals, R. ornithinolytica has been associated with septicaemia in calves (16) and E. hormaechei with respiratory disease in cattle and sheep (19, 22). Regardless of the clinical importance of the species identified, the high frequency of antimicrobial resistance detected was significant. Our results agree with other studies that also found high levels of resistance to β-lactams in Enterobacteriaceae other than E. coli (5, 13), including the bacterial species identified in this study (1, 8, 10, 16, 19, 20, 22). The antimicrobial resistance found in most of the bacterial species isolated in this study is of concern, as the species can act as a reservoir for the spread of antimicrobial resistance to a particular preparation to other microbial inhabitants of the gut community of these animals or even other bacterial pathogens. Moreover, humans and livestock, mainly grazing cattle, sheep and goats, may become infected with antimicrobial-resistant Enterobacteriaceae other than E. coli after consuming food and water that has been contaminated with raccoon faeces.

In conclusion, our study shows that raccoons in the Madrid region of Spain harbour different species of Enterobacteriaceae other than E. coli which are considered opportunistic pathogens for humans and other animals. Therefore, it is recommended to monitor raccoons, as well as other feral animals that could interact with humans or other wild or domestic animals, for the presence of potentially pathogenic microorganisms and to investigate the levels of antimicrobial resistance in those microorganisms.

Identification by sequencing of the 16S ribosomal RNA (16S rRNA) gene and matrix-assisted laser desorption/ionisation–time-of-flight mass spectrometry (MALDI-TOF MS) of 12 Enterobacteriaceae isolates other than E. coli from raccoons in the Madrid region of Spain

Isolate reference Sequencing of the 16S rRNA gene MALDI-TOF MS
Identification Similarity (%) First identification (score value) a Second identification (score value) a Consistency b
23147c Enterobacter hormaechei subsp. hoffmannii 98.8 Enterobacter cloacae (2.296) Escherichia coli (2.254) D
23167b Citrobacter freundii 98.8 Citrobacter braakii (2.458) Citrobacter freundii (2.337) C
23353b Citrobacter portucalensis 99.3 Citrobacter braakii (2.467) Citrobacter freundii (2.282) D
23375a Citrobacter portucalensis 99.5 Citrobacter freundii (2.289) Citrobacter braakii (2.261) D
23375c Raoultella ornithinolytica 99.9 Raoultella ornithinolytica (2.399) Raoultella planticola (2.301) B
23380a Citrobacter murliniae 99.2 Citrobacter braakii (2.397) Citrobacter freundii (2.154) D
23380b Hafnia paralvei 99.1 Hafnia alvei (2.292) Dickeya chrysanthemi (1.504) D
23380c Hafnia paralvei 99.1 Hafnia alvei (2.292) Dickeya chrysanthemi (1.504) D
23381a Raoultella ornithinolytica 99.7 Raoultella ornithinolytica (2.383) Raoultella planticola (2.245) B
23381c Citrobacter gillenii 99.0 Citrobacter gillenii (2.460) Citrobacter freundii (2.122) B
26650a Citrobacter gillenii 99.5 Citrobacter gillenii (2.408) Citrobacter freundii (2.140) B
26650c Citrobacter gillenii 99.5 Citrobacter gillenii (2.408) Citrobacter freundii (2.140) B

Antimicrobial susceptibility of 12 Enterobacteriaceae isolates other than E. coli from raccoons in the Madrid region of Spain

Isolate reference Identification Susceptibility to:
AMP AMC FOX ST K SF NA CIP
23147c Enterobacter hormaechei subsp. hoffmannii R R R S S I S S
23167b Citrobacter freundii R R R S S I S S
23353b Citrobacter portucalensis R R R S S I I I
23375a Citrobacter portucalensis R R R S S S S S
23375c Raoultella ornithinolytica R S S R S S R S
23380a Citrobacter murliniae S S S I S I S S
23380b Hafnia paralvei R R S I S S S S
23380c Hafnia paralvei R R S I S S S S
23381a Raoultella ornithinolytica R S S S S I S I
23381c Citrobacter gillenii I S S S R R S I
26650a Citrobacter gillenii R S S S S I S S
26650c Citrobacter gillenii R S S S S I S S

Interpretive criteria for Enterobacteriaceae using disc diffusion susceptibility testing reported as inhibition zone diameters (mm)

Antimicrobial agent Disc (μg) Susceptible Intermediate Resistant
Ampicillin 10 ≥17 14–16 ≤13
Amoxicillin-clavulanic acid 30 (20/10) ≥18 14–17 ≤13
Cefoxitin 30 ≥18 15–17 ≤14
Ceftriaxone 30 ≥23 20–22 ≤19
Streptomycin 10 ≥15 12–14 ≤11
Kanamycin 30 ≥18 14–17 ≤13
Amikacin 30 ≥17 15–16 ≤14
Gentamicin 10 ≥15 13–14 ≤12
Tetracycline 30 ≥15 12–14 ≤11
Chloramphenicol 30 ≥18 13–17 ≤12
Sulphafurazole 300 ≥17 13–16 ≤12
Trimethoprim-sulphamethoxazole 25 (1.25/23.75) ≥16 11–15 ≤10
Nalidixic acid 30 ≥19 14–18 ≤13
Ciprofloxacin 5 ≥26 22–25 ≤21

Abbott S.L., Moler S., Green N., Tran R.K., Wainwright K., Janda J.M.: Clinical and laboratory diagnostic characteristics and cytotoxigenic potential of Hafnia alvei and Hafnia paralvei strains. J Clin Microbiol 2011, 49, 3122–3126, doi: 10.1128/JCM.00866-11. Abbott S.L. Moler S. Green N. Tran R.K. Wainwright K. Janda J.M. Clinical and laboratory diagnostic characteristics and cytotoxigenic potential of Hafnia alvei and Hafnia paralvei strains J Clin Microbiol 2011 49 3122 3126 10.1128/JCM.00866-11316563421795516Ouvrir le DOISearch in Google Scholar

Clermont D., Motreff L., Passet V., Fernandez J.C., Bizet C., Brisse S.: Multilocus sequence analysis of the genus Citrobacter and description of Citrobacter pasteurii sp. nov. Int J Syst Evol Microbiol 2015, 65, 1486–1490, doi: 10.1099/ijs.0.000122. Clermont D. Motreff L. Passet V. Fernandez J.C. Bizet C. Brisse S. Multilocus sequence analysis of the genus Citrobacter and description of Citrobacter pasteurii sp nov. Int J Syst Evol Microbiol 2015 65 1486 1490 10.1099/ijs.0.00012225687346Ouvrir le DOISearch in Google Scholar

Clinical and Laboratory Standards Institute: M100-ED29: 2019 Performance Standards for Antimicrobial Susceptibility Testing, 29th Edition, CLSI, Wayne, PA, 2019. Clinical and Laboratory Standards Institute M100-ED29: 2019 Performance Standards for Antimicrobial Susceptibility Testing, 29th Edition, CLSI Wayne, PA 2019Search in Google Scholar

Fernández A., Vela A.I., Andrada M., Herráez P., Díaz-Delgado J., Domínguez L., Arbelo M.: Citrobacter freundii septicemia in a stranded newborn Cuvier’s beaked whale (Ziphius cavirostris). J Wildl Dis 2011, 47, 1043–1046, doi: 10.7589/0090-3558-47.4.1043. Fernández A. Vela A.I. Andrada M. Herráez P. Díaz-Delgado J. Domínguez L. Arbelo M. Citrobacter freundii septicemia in a stranded newborn Cuvier’s beaked whale (Ziphius cavirostris) J Wildl Dis 2011 47 1043 1046 10.7589/0090-3558-47.4.104322102682Ouvrir le DOISearch in Google Scholar

Foti M., Siclari A., Mascetti A., Fisichella V.: Study of the spread of antimicrobial-resistant Enterobacteriaceae from wild mammals in the National Park of Aspromonte (Calabria, Italy). Environ Toxicol Pharmacol 2018, 63, 69–73, doi: 10.1016/j.etap.2018.08.016. Foti M. Siclari A. Mascetti A. Fisichella V. Study of the spread of antimicrobial-resistant Enterobacteriaceae from wild mammals in the National Park of Aspromonte (Calabria, Italy) Environ Toxicol Pharmacol 2018 63 69 73 10.1016/j.etap.2018.08.01630172957Ouvrir le DOISearch in Google Scholar

García J.T., García F.J., Alda F., González J.L., Aramburu M.J., Cortés Y., Prieto B., Pliego B., Pérez M., Herrera J., García-Román L.: Recent invasion and status of the raccoon (Procyon lotor) in Spain. Biol Invasions 2012, 14, 1305–1310, doi: 10.1007/s10530-011-0157-x. García J.T. García F.J. Alda F. González J.L. Aramburu M.J. Cortés Y. Prieto B. Pliego B. Pérez M. Herrera J. García-Román L. Recent invasion and status of the raccoon (Procyon lotor) in Spain Biol Invasions 2012 14 1305 1310 10.1007/s10530-011-0157-xOuvrir le DOISearch in Google Scholar

Giacopello C., Foti M., Mascetti A., Grosso F., Ricciardi D., Fisichella V.L., Piccolo F.: Antimicrobial resistance patterns of Enterobacteriaceae in European wild bird species admitted in a wildlife rescue centre. Vet Ital 2016, 52, 139–144, doi: 10.12834/VetIt.327.1374.2. Giacopello C. Foti M. Mascetti A. Grosso F. Ricciardi D. Fisichella V.L. Piccolo F. Antimicrobial resistance patterns of Enterobacteriaceae in European wild bird species admitted in a wildlife rescue centre Vet Ital 2016 52 139 144 10.12834/VetIt.327.1374.227393875Ouvrir le DOISearch in Google Scholar

Hajjar R., Ambaraghassi G., Sebajang H., Schwenter F., Su S.H.: Raoultella ornithinolytica: emergence and resistance. Infect Drug Resist 2020, 13, 1091–1104, doi: 10.2147/IDR.S191387. Hajjar R. Ambaraghassi G. Sebajang H. Schwenter F. Su S.H. Raoultella ornithinolytica: emergence and resistance Infect Drug Resist 2020 13 1091 1104 10.2147/IDR.S191387716727432346300Ouvrir le DOISearch in Google Scholar

Harada K., Shimizu T., Ozaki H., Kimura Y., Miyamoto T., Tsuyuki Y.: Characterization of antimicrobial resistance in Serratia spp. and Citrobacter spp. isolates from companion animals in Japan: nosocomial dissemination of extended-spectrum cephalosporin-resistant Citrobacter freundii. Microorganisms 2019, 7, 64, doi: 10.3390/microorganisms 7030064. Harada K. Shimizu T. Ozaki H. Kimura Y. Miyamoto T. Tsuyuki Y. Characterization of antimicrobial resistance in Serratia spp and Citrobacter spp. isolates from companion animals in Japan: nosocomial dissemination of extended-spectrum cephalosporin-resistant Citrobacter freundii. Microorganisms 2019 7 64 10.3390/microorganisms7030064646291030823419Ouvrir le DOISearch in Google Scholar

Hossain S., Wimalasena S.H.M.P., De Zoysa M., Heo G.J.: Prevalence of Citrobacter spp. from pet turtles and their environment. J Exot Pet Med 2017, 26, 7–12, doi: 10.1053/j.jepm.2016.10.004. Hossain S. Wimalasena S.H.M.P. De Zoysa M. Heo G.J. Prevalence of Citrobacter spp from pet turtles and their environment. J Exot Pet Med 2017 26 7 12 10.1053/j.jepm.2016.10.004Ouvrir le DOISearch in Google Scholar

Kolínská R., Spanělová P., Dřevínek M., Hrabák J., Zemličková H.: Species identification of strains belonging to genus Citrobacter using the biochemical method and MALDI-TOF mass spectrometry. Folia Microbiol 2015, 60, 53–59, doi: 10.1007/s12223-014-0340-4. Kolínská R. Spanělová P. Dřevínek M. Hrabák J. Zemličková H. Species identification of strains belonging to genus Citrobacter using the biochemical method and MALDI-TOF mass spectrometry Folia Microbiol 2015 60 53 59 10.1007/s12223-014-0340-425113540Ouvrir le DOISearch in Google Scholar

Liu L., Qin L., Hao S., Lan R., Xu B., Guo Y., Jiang R., Sun H., Chen X., Lv X., Xu J., Zhao C.: Lineage, antimicrobial resistance and virulence of Citrobacter spp. Pathogens 2020, 9, 195, doi: 10.3390/pathogens9030195. Liu L. Qin L. Hao S. Lan R. Xu B. Guo Y. Jiang R. Sun H. Chen X. Lv X. Xu J. Zhao C. Lineage, antimicrobial resistance and virulence of Citrobacter spp Pathogens 2020 9 195 10.3390/pathogens9030195715720232155802Ouvrir le DOISearch in Google Scholar

Murugaiyan J., Krueger K., Roesler U., Weinreich J., Schierack P.: Assessment of species and antimicrobial resistance among Enterobacteriaceae isolated from mallard duck faeces. Environ Monit Assess 2015, 187, 127, doi: 10.1007/s10661-015-4346-4. Murugaiyan J. Krueger K. Roesler U. Weinreich J. Schierack P. Assessment of species and antimicrobial resistance among Enterobacteriaceae isolated from mallard duck faeces Environ Monit Assess 2015 187 127 10.1007/s10661-015-4346-425697309Ouvrir le DOISearch in Google Scholar

Orden J.A., García-Meniño I., Flament-Simon S.C., Blanco J., de la Fuente R., Martínez-Rodrigo A., Mas A., Carrión J., Sobrino F., Domínguez-Bernal G.: Raccoons (Procyon lotor) in the Madrid region of Spain are carriers of antimicrobial-resistant Escherichia coli and enteropathogenic E. coli. Zoonoses Public Health 2021, 68, 69–78, doi: 10.1111/zph.12784. Orden J.A. García-Meniño I. Flament-Simon S.C. Blanco J. de la Fuente R. Martínez-Rodrigo A. Mas A. Carrión J. Sobrino F. Domínguez-Bernal G. Raccoons (Procyon lotor) in the Madrid region of Spain are carriers of antimicrobial-resistant Escherichia coli and enteropathogenic E coli. Zoonoses Public Health 2021 68 69 78 10.1111/zph.1278433225569Ouvrir le DOISearch in Google Scholar

Ortega J., Corpa J.M., Orden J.A., Blanco J., Carbonell M.D., Gerique A.C., Latimer E., Hayward G.S., Roemmelt A., Kraemer T., Romey A., Kassimi L.B., Casares M.: Acute death associated with Citrobacter freundii infection in an African elephant (Loxodonta africana). J Vet Diagn Invest 2015, 27, 632–636, doi: 10.1177/1040638715596034. Ortega J. Corpa J.M. Orden J.A. Blanco J. Carbonell M.D. Gerique A.C. Latimer E. Hayward G.S. Roemmelt A. Kraemer T. Romey A. Kassimi L.B. Casares M. Acute death associated with Citrobacter freundii infection in an African elephant (Loxodonta africana) J Vet Diagn Invest 2015 27 632 636 10.1177/104063871559603426179092Ouvrir le DOISearch in Google Scholar

Pas M.L., Vanneste K., Bokma J., Van Driessche L., De Keersmaecker S.C.J., Roosens N.H., Haesebrouck F., Boyen F., Pardon B.: Case report: multidrug resistant Raoultella ornithinolytica in a septicemic calf. Front Vet Sci 2021, 8, 631716, doi: 10.3389/fvets.2021.631716. Pas M.L. Vanneste K. Bokma J. Van Driessche L. De Keersmaecker S.C.J. Roosens N.H. Haesebrouck F. Boyen F. Pardon B. Case report: multidrug resistant Raoultella ornithinolytica in a septicemic calf Front Vet Sci 2021 8 631716 10.3389/fvets.2021.631716803289133842574Ouvrir le DOISearch in Google Scholar

Pérez-Sancho M., Cerdá I., Fernández-Bravo A., Domínguez L., Figueras M.J., Fernández-Garayzábal J.F., Vela A.I.: Limited performance of MALDI-TOF for identification of fish Aeromonas isolates at species level. J Fish Dis 2018, 41, 1485– 1493, doi: 10.1111/jfd.12837. Pérez-Sancho M. Cerdá I. Fernández-Bravo A. Domínguez L. Figueras M.J. Fernández-Garayzábal J.F. Vela A.I. Limited performance of MALDI-TOF for identification of fish Aeromonas isolates at species level J Fish Dis 2018 41 14851493 10.1111/jfd.1283730105821Ouvrir le DOISearch in Google Scholar

Ribeiro T.G., Clermont D., Branquinho R., Machado E., Peixe L., Brisse S.: Citrobacter europaeus sp. nov., isolated from water and human faecal samples. Int J Syst Evol Microbiol 2017, 67, 170–173, doi: 10.1099/ijsem.0.001606. Ribeiro T.G. Clermont D. Branquinho R. Machado E. Peixe L. Brisse S. Citrobacter europaeus sp nov., isolated from water and human faecal samples. Int J Syst Evol Microbiol 2017 67 170 173 10.1099/ijsem.0.00160627902229Ouvrir le DOISearch in Google Scholar

Shi H., Wang K., Wang L., Sun S., Li B., Yao L.: Case report of Enterobacter hormaechei in sheep with respiratory disease and death. BMC Vet Res 2022, 18, 57, doi: 10.1186/s12917-022-03157-z. Shi H. Wang K. Wang L. Sun S. Li B. Yao L. Case report of Enterobacter hormaechei in sheep with respiratory disease and death BMC Vet Res 2022 18 57 10.1186/s12917-022-03157-z879084535081969Ouvrir le DOISearch in Google Scholar

Thomas S.G., Abajorga M., Glover M.A., Wengert P.C., Parthasarathy A., Savka M.A., Wadsworth C.B., Shipman P.A., Hudson A.O.: Aeromonas hydrophila RIT668 and Citrobacter portucalensis RIT669—potential zoonotic pathogens isolated from spotted turtles. Microorganisms 2020, 8, 1805, doi: 10.3390/microorganisms8111805. Thomas S.G. Abajorga M. Glover M.A. Wengert P.C. Parthasarathy A. Savka M.A. Wadsworth C.B. Shipman P.A. Hudson A.O. Aeromonas hydrophila RIT668 and Citrobacter portucalensis RIT669—potential zoonotic pathogens isolated from spotted turtles Microorganisms 2020 8 1805 10.3390/microorganisms8111805769833733212916Ouvrir le DOISearch in Google Scholar

Vela A.I., Fernández A., Bernaldo de Quirós Y., Herráez P., Domínguez L., Fernández-Garayzábal J.F.: Weissella ceti sp. nov., isolated from beaked whales (Mesoplodon bidens). Int J Syst Evol Microbiol 2011, 61, 2758–2762, doi: 10.1099/ijs.0.028522-0. Vela A.I. Fernández A. Bernaldo de Quirós Y. Herráez P. Domínguez L. Fernández-Garayzábal J.F. Weissella ceti sp nov., isolated from beaked whales (Mesoplodon bidens). Int J Syst Evol Microbiol 2011 61 2758 2762 10.1099/ijs.0.028522-021216921Ouvrir le DOISearch in Google Scholar

Wang Z., Duan L., Liu F., Hu Y., Leng C., Kan Y., Yao L., Shi H.: First report of Enterobacter hormaechei with respiratory disease in calves. BMC Vet Res 2020, 16, 1, doi: 10.1186/s12917-019-2207-z. Wang Z. Duan L. Liu F. Hu Y. Leng C. Kan Y. Yao L. Shi H. First report of Enterobacter hormaechei with respiratory disease in calves BMC Vet Res 2020 16 1 10.1186/s12917-019-2207-z694229431900161Ouvrir le DOISearch in Google Scholar

Yoon S.H., Ha S.M., Kwon S., Lim J., Kim Y., Seo H., Chun J.: Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017, 67, 1613–1617, doi: 10.1099/ijsem.0.001755. Yoon S.H. Ha S.M. Kwon S. Lim J. Kim Y. Seo H. Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies Int J Syst Evol Microbiol 2017 67 1613 1617 10.1099/ijsem.0.001755556354428005526Ouvrir le DOISearch in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo