Accès libre

Identification and Validation of New Reference Genes for Normalization of Gene Expression in Flower and Berry Developmental Stages of Interspecific Grape Hybrid V. vinifera (L.) × V. labrusca (L.)

À propos de cet article

Citez

Alva O., Roa-Roco R.N., Pérez-Díaz R., Yáñez M., Tapia J., Moreno Y., et al. 2015. Pollen morphology and boron concentration in floral tissues as factors triggering natural and GA-induced parthenocarpic fruit development in grapevine. PLoS ONE 10(10); e0139503; 18 p. DOI: 10.1371/journal.pone.0139503. Search in Google Scholar

Andersen C.L., Jensen J.L., Ørntoft T.F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64(15): 5245–5250. DOI: 10.1158/0008-5472.can-04-0496. Search in Google Scholar

Borges A.F., Fonseca C., Ferreira R.B., Lourenço A.M., Monteiro S. 2014. Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera. PLoS ONE 9(10); e111399; 9 p. DOI: 10.1371/journal.pone.0111399. Search in Google Scholar

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M. et al. 2009. The MIQE guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry 55(4): 611–622. DOI: 10.1373/clinchem.2008.112797. Search in Google Scholar

Chuaqui R.F., Bonner R.F., Best C.J.M., Gillespie J.W., Flaig M.J., Hewitt S.M. et al. 2002. Post-analysis follow-up and validation of microarray experiments. Nature Genetics 32(Supplement 4): 509–514. DOI: 10.1038/ng1034. Search in Google Scholar

Coito J.L., Rocheta M., Carvalho L., Amâncio S. 2012. Microarray-based uncovering reference genes for quantitative real time PCR in grapevine under abiotic stress. BMC Research Notes 5; 220; 12 p. DOI: 10.1186/1756-0500-5-220. Search in Google Scholar

Coombe B.G. 1995. Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research 1(2): 104–110. DOI: 10.1111/j.1755-0238.1995.tb00086.x. Search in Google Scholar

Deluc L.G., Grimplet J., Wheatley M.D., Tillett R.L., Quilici D.R., Osborne C. et al. 2007. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8; 429; 42 p. DOI: 10.1186/1471-2164-8-429. Search in Google Scholar

Fasoli M., Dal Santo S., Zenoni S., Tornielli G.B., Farina L., Zamboni A. et al. 2012. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24(9): 3489–3505. DOI: 10.1105/tpc.112.100230. Search in Google Scholar

González-Agüero M., García-Rojas M., Di Genova A., Correa J., Maass A., Orellana A., Hinrichsen P. 2013. Identification of two putative reference genes from grapevine suitable for gene expression analysis in berry and related tissues derived from RNASeq data. BMC Genomics 14; 878; 12 p. DOI: 10.1186/1471-2164-14-878. Search in Google Scholar

Graeber K., Linkies A., Wood A.T.A., Leubner-Metzger G. 2011. A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell 23(6): 2045–2063, DOI: 10.1105/tpc.111.084103. Search in Google Scholar

Gutierrez L., Mauriat M., Guénin S., Pelloux J., Lefebvre J.-F., Louvet R. et al. 2008. The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription‐polymerase chain reaction (RT‐PCR) analysis in plants. Plant Biotechnology Journal 6(6): 609–618. DOI: 10.1111/j.1467-7652.2008.00346.x. Search in Google Scholar

Katayama-Ikegami A., Katayama T., Takai M., Sakamoto T. 2016. Reference gene validation for gene expression studies using quantitative RT-PCR during berry development of ‘Aki Queen’ grapes. Vitis 55(4): 157–160. DOI: 10.5073/vitis.2016.55.157-160. Search in Google Scholar

Kuhn N., Guan L., Dai Z.W., Wu B.-H., Lauvergeat V., Gomès E. et al. 2014. Berry ripening: recently heard through the grapevine. Journal of Experimental Botany 65(16): 4543–4559. DOI: 10.1093/jxb/ert395. Search in Google Scholar

Luo M., Gao Z., Li H., Li Q., Zhang C., Xu W. et al. 2018. Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine. Scientific Reports 8; 4444; 11 p. DOI: 10.1038/s41598-018-22743-6. Search in Google Scholar

Ma L., Sun L., Guo Y., Lin H., Liu Z., Li K., Guo X. 2020. Transcriptome analysis of table grapes (Vitis vinifera L.) identified a gene network module associated with berry firmness. PLoS ONE 15(8); e0237526; 15 p. DOI: 10.1371/journal.pone.0237526. Search in Google Scholar

Massonnet M., Fasoli M., Tornielli G.B., Altieri M., Sandri M., Zuccolotto P. et al. 2017. Ripening transcriptomic program in red and white grapevine varieties correlates with berry skin anthocyanin accumulation. Plant Physiology 174(4): 2376–2396. DOI: 10.1104/pp.17.00311. Search in Google Scholar

Mejía N., Soto B., Guerrero M., Casanueva X., Houel C., de los Ángeles Miccono M. et al. 2011. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biology 11; 57; 18 p. DOI: 10.1186/1471-2229-11-57. Search in Google Scholar

Monteiro F., Sebastiana M., Pais M.S., Figueiredo A. 2013. Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars. PLoS ONE 8(9); e72998; 10 p. DOI: 10.1371/journal.pone.0072998. Search in Google Scholar

Muñoz-Espinoza C., Di Genova A., Correa J., Silva R., Maass A., González-Agüero M. et al. 2016. Transcriptome profiling of grapevine seedless segregants during berry development reveals candidate genes associated with berry weight. BMC Plant Biology 16; 104; 17 p. DOI: 10.1186/s12870-016-0789-1. Search in Google Scholar

Nwafor C.C., Gribaudo I., Schneider A., Wehrens R., Grando M.S., Costantini L. 2014. Transcriptome analysis during berry development provides insights into co-regulated and altered gene expression between a seeded wine grape variety and its seedless somatic variant. BMC Genomics 15; 1030; 22 p. DOI: 10.1186/1471-2164-15-1030. Search in Google Scholar

Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pairwise correlations. Biotechnology Letters 26: 509–515. DOI: 10.1023/b:bile.0000019559.84305.47. Search in Google Scholar

Rodrigues T.B., Khajuria C., Wang H., Matz N., Cunha Cardoso D., Valicente F.H. et al. 2014. Validation of reference housekeeping genes for gene expression studies in Western corn rootworm (Diabrotica virgifera virgifera). PLoS ONE 9(10); e109825; 8 p. DOI: 10.1371/journal.pone.0109825. Search in Google Scholar

Royo C., Carbonell-Bejerano P., Torres-Pérez R., Nebish A., Martínez Ó., Rey M. et al. 2016. Developmental, transcriptome, and genetic alterations associated with parthenocarpy in the grapevine seedless somatic variant Corinto bianco. Journal of Experimental Botany 67(1): 259–273. DOI: 10.1093/jxb/erv452. Search in Google Scholar

Selim M., Legay S., Berkelmann-Löhnertz B., Langen G., Kogel K.-H., Evers D. 2012. Identification of suitable reference genes for real-time RT-PCR normalization in the grapevine-downy mildew pathosystem. Plant Cell Reports 31(1): 205–216. DOI: 10.1007/s00299-011-1156-1. Search in Google Scholar

Silver N., Best S., Jiang J., Thein S.L. 2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology 7; 33; 9 p. DOI: 10.1186/1471-2199-7-33. Song H., Mao W., Duan Z., Que Qi., Zhou W., Chen X., Search in Google Scholar

Li P. 2020. Selection and validation of reference genes for measuring gene expression in Toona ciliata under different experimental conditions by quantitative real-time PCR analysis. BMC Plant Biology 20; 450; 14 p. DOI: 10.1186/s12870-020-02670-3. Search in Google Scholar

Sweetman C., Wong D.C.J., Ford C.M., Drew D.P. 2012. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13; 691; 25 p. DOI: 10.1186/1471-2164-13-691. Search in Google Scholar

Tashiro R.M., Philips J.G., Winefield C.S. 2016. Identification of suitable grapevine reference genes for qRT-PCR derived from heterologous species. Molecular Genetics and Genomics 291(1): 483–492. DOI: 10.1007/s00438-015-1081-z. Search in Google Scholar

Tetali S., Karkamkar S.P., Phalake S.V. 2020. Mutation breeding for inducing seedlessness in grape variety ARI 516. International Journal of Minor Fruits, Medicinal and Aromatic Plants 6(2): 67–71. Search in Google Scholar

Upadhyay A., Jogaiah S., Maske S.R., Kadoo N.Y., Gupta V.S. 2015. Expression of stable reference genes and SPINDLY gene in response to gibberellic acid application at different stages of grapevine development. Biologia Plantarum 59(3): 436–444. DOI: 10.1007/s10535-015-0521-2. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Search in Google Scholar

Roy N., De Paepe A., Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3(7); research0034.1; 12 p. DOI: 10.1186/gb-2002-3-7-research0034. Search in Google Scholar

Wan Q., Chen S., Shan Z., Yang Z., Chen L., Zhang C. et al. 2017. Stability evaluation of reference genes for gene expression analysis by RT-qPCR in soybean under different conditions. PLoS ONE 12(12): e0189405; 14 p. DOI: 10.1371/journal.pone.0189405. Search in Google Scholar

Wang L., Yin X., Cheng C., Wang H., Guo R., Xu X. et al. 2015. Evolutionary and expression analysis of a MADS-box gene superfamily involved in ovule development of seeded and seedless grapevines. Molecular Genetics and Genomics 290(3): 825–846. DOI: 10.1007/s00438-014-0961-y. Search in Google Scholar

Wang L., Hu X., Jiao C., Li Z., Fei Z., Yan X. et al. 2016. Transcriptome analyses of seed development in grape hybrids reveals a possible mechanism influencing seed size. BMC Genomics 17: 898. DOI: 10.1186/s12864-016-3193-1. Search in Google Scholar

Xie F., Xiao P., Chen D., Xu L., Zhang B. 2012. miRDeep-Finder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology 80(1): 75–84. DOI: 10.1007/s11103-012-9885-2. Search in Google Scholar

Zenoni S., Ferrarini A., Giacomelli E., Xumerle L., Fasoli M., Malerba G. et al. 2010. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiology 152(4): 1787–1795. DOI: 10.1104/pp.109.149716. Search in Google Scholar

Zhou L., Chen F., Ye J., Pan H. 2018. Selection of reliable reference genes for RT-qPCR analysis of Bursaphelenchus mucronatus gene expression from different habitats and developmental stages. Frontiers in Genetics 9: 1–11. DOI: 10.3389/fgene.2018.00269. Search in Google Scholar

eISSN:
2353-3978
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Plant Science, Ecology, other