À propos de cet article

Citez

Aberle, J., Järvelä, J., 2013. Flow resistance of emergent rigid and flexible floodplain vegetation. J. Hydraul. Res., 51, 33–45. https://doi.org/10.1080/00221686.2012.754795 Search in Google Scholar

Afzalimehr, H., Dey, S., 2009. Influence of bank vegetation and gravel bed on velocity and Reynolds stress distributions. Int. J. Sediment Res., 24, 236–246. https://doi.org/10.1016/S1001-6279(09)60030-5 Search in Google Scholar

Alekseevskiy, N.I., Berkovich, K.M., Chalov, R.S., 2008. Erosion, sediment transportation and accumulation in rivers. Int. J. Sediment Res., 23, 93–105. https://doi.org/10.1016/S1001-6279(08)60009-8 Search in Google Scholar

Armanini, A., Righetti, M., Grisenti, P., 2005. Direct measurement of vegetation resistance in prototype scale. J. Hydraul. Res., 43, 481–487. https://doi.org/10.1080/00221680509500146 Search in Google Scholar

Baptist, M.J., Babovic, V., Rodríguez Uthurburu, J., Keijzer, M., Uittenbogaard, R.E., Mynett, A., Verwey, A., 2007. On inducing equations for vegetation resistance. J. Hydraul. Res., 45, 435–450. https://doi.org/10.1080/00221686.2007.9521778 Search in Google Scholar

Ben Meftah, M., Mossa, M., 2016. A modified log-law of flow velocity distribution in partly obstructed open channels. Environ. Fluid Mech., 16, 453–479. https://doi.org/10.1007/s10652-015-9439-7 Search in Google Scholar

Bennett, S.J., Pirim, T., Barkdoll, B.D., 2002. Using simulated emergent vegetation to alter stream flow direction within a straight experimental channel. Geomorphology, 44, 115–126. https://doi.org/10.1016/S0169-555X(01)00148-9 Search in Google Scholar

Chapman, J.A., Wilson, B.N., Gulliver, J.S., 2015. Drag force parameters of rigid and flexible vegetal elements: drag resistance from flexible vegetal elements. Water Resour. Res., 51, 3292–3302. https://doi.org/10.1002/2014WR015436 Search in Google Scholar

Cheng, N.S., 2011. Representative roughness height of submerged vegetation: representative roughness height of submerged vegetation. Water Resour. Res., 47. https://doi.org/10.1029/2011WR010590 Search in Google Scholar

Cheng, N.S., Nguyen, H.T., 2011. Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows. J. Hydraul. Eng., 137, 995–1004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000377 Search in Google Scholar

D’Ippolito, A., Lauria, A., Alfonsi, G., Calomino, F., 2019. Investigation of flow resistance exerted by rigid emergent vegetation in open channel. Acta Geophys., 67, 971–986. https://doi.org/10.1007/s11600-019-00280-8 Search in Google Scholar

Fathi-Maghadam, M., Kouwen, N., 1997. Nonrigid, nonsubmerged, vegetative roughness on floodplains. J. Hydraul. Eng., 123, 51–57. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:1(51) Search in Google Scholar

Gu, F.F., Ni, H.G., Qi, D.M., 2007. Roughness coefficient for unsubmerged and submerged reed. J. Hydrodyn., 19, 421–428. https://doi.org/10.1016/S1001-6058(07)60135-8 Search in Google Scholar

Gurnell, A.M., Bertoldi, W., Corenblit, D., 2012. Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth Sci. Rev., 111, 129–141. https://doi.org/10.1016/j.earscirev.2011.11.005 Search in Google Scholar

Huai, W.X., Chen, Z.B., Han, J., Zhang, L.X., Zeng, Y.H., 2009a. Mathematical model for the flow with submerged and emerged rigid vegetation. J. Hydrodyn., 21, 722–729. https://doi.org/10.1016/S1001-6058(08)60205-X Search in Google Scholar

Huai, W.X., Shi, H.R., Song, S.W., Ni, S.Q., 2018. A simplified method for estimating the longitudinal dispersion coefficient in ecological channels with vegetation. Ecol. Indic., 92, 91–98. https://doi.org/10.1016/j.ecolind.2017.05.015 Search in Google Scholar

Huai, W.X., Xue, W.Y., Qian, Z.D., 2015. Large-eddy simulation of turbulent rectangular open-channel flow with an emergent rigid vegetation patch. Adv. Water Resour., 80, 30–42. https://doi.org/10.1016/j.advwatres.2015.03.006 Search in Google Scholar

Huai, W.X., Zeng, Y.H., Xu, Z.G., Yang, Z.H., 2009b. Threelayer model for vertical velocity distribution in open channel flow with submerged rigid vegetation. Adv. Water Resour., 32, 487–492. https://doi.org/10.1016/j.advwatres.2008.11.014 Search in Google Scholar

Hui, E.Q., Hu, X.E., Jiang, C., Ma, F.K., Zhu, Z.D., 2010. A study of drag coefficient related with vegetation based on the flume experiment. J. Hydrodyn., 22, 329–337. https://doi.org/10.1016/S1001-6058(09)60062-7 Search in Google Scholar

James, C.S., 2021. Flow resistance in channels with large emergent roughness elements. J. S. Afr. Inst. Civ. Eng., 63, 1–9. https://doi.org/10.17159/2309-8775/2021/v63n4a1 Search in Google Scholar

James, C.S., Birkhead, A.L., Jordanova, A.A., O’Sullivan, J.J., 2004. Flow resistance of emergent vegetation. J. Hydraul. Res., 42, 390–398. https://doi.org/10.1080/00221686.2004.9728404 Search in Google Scholar

Järvelä, J., 2002. Flow resistance of flexible and stiff vegetation: a flume study with natural plants. J. Hydrol., 269, 44–54. https://doi.org/10.1016/S0022-1694(02)00193-2 Search in Google Scholar

Jordanova, A., James, C., 2003. Experimental study of bed load transport through emergent vegetation. J. Hydraul. Eng.- ASCE, 129, 474–478. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(474) Search in Google Scholar

Jordanova, A.A., James, C.S., Birkhead, A.L., 2006. Practical estimation of flow resistance through emergent vegetation. Proc. Inst. Civil. Eng.-Water Manag., 159, 173–181. Search in Google Scholar

Klopstra, D., Barneveld, H.J., Noortwijk, J.M.V., Velzen, E.H.V., 1997. Analytical model for hydraulic roughness of submerged vegetation. In: Proc. 27th Congress of the International Association of Hydraulic Research, ASCE, San Francisco, USA, pp. 775–780. Search in Google Scholar

Kothyari, U.C., Hayashi, K., Hashimoto, H., 2009. Drag coefficient of unsubmerged rigid vegetation stems in open channel flows. J. Hydraul. Res., 47, 691–699. https://doi.org/10.3826/jhr.2009.3283 Search in Google Scholar

Kouwen, N., Fathi-Moghadam, M., 2000. Friction factors for coniferous trees along rivers. J. Hydraul. Eng., 126, 732–740. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(732) Search in Google Scholar

Kumar, P., Sharma, A., 2022. Experimental investigation of 3D flow properties around emergent rigid vegetation. Ecohydrol., 15. https://doi.org/10.1002/eco.2474 Search in Google Scholar

Li, S.L., Shi, H.R., Xiong, Z.W., Huai, W.X., Cheng, N.S., 2015. New formulation for the effective relative roughness height of open channel flows with submerged vegetation. Adv. Water Resour., 86, 46–57. https://doi.org/10.1016/j.advwatres.2015.09.018 Search in Google Scholar

Li, Y.P., Anim, D.O., Wang, Y., Tang, C.Y., Du, W., Yu, Z.B., Acharya, K., 2014. An open-channel flume study of flow characteristics through a combined layer of submerged and emerged flexible vegetation: flow characteristics through submerged and emerged flexible vegetation. Ecohydrol., 7, 633–647. https://doi.org/10.1002/eco.1384 Search in Google Scholar

Liu, D., Diplas, P., Fairbanks, J.D., Hodges, C.C., 2008. An experimental study of flow through rigid vegetation. J. Geophys. Res., 113, F04015. https://doi.org/10.1029/2008JF001042 Search in Google Scholar

Liu, M.Y., Huai, W.X., Yang, Z.H., Zeng, Y.H., 2020. A genetic programming-based model for drag coefficient of emergent vegetation in open channel flows. Adv. Water Resour., 140, 103582. https://doi.org/10.1016/j.advwatres.2020.103582 Search in Google Scholar

López, F., García, M.H., 2001. Mean flow and turbulence structure of open-channel flow through non-emergent vegetation. J. Hydraul., Eng. 127, 392–402. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(392) Search in Google Scholar

Michioku, K., Kometani, S., Uotani, T., Kanda, K., Irie, Y., Yanagida, K., 2014. Analysis of equivalent Manning’s roughness coefficient for trees vegetated on floodplain. In: Proc. 7th Int. Conf. on Fluvial Hydraulics (River Flow), pp. 563–570. Search in Google Scholar

Millar, R.G., 2000. Influence of bank vegetation on alluvial channel patterns. Water Resour. Res., 36, 1109–1118. https://doi.org/10.1029/1999WR900346 Search in Google Scholar

Nezu, I., Sanjou, M., 2008. Turburence structure and coherent motion in vegetated canopy open-channel flows. J. Hydro-Environ. Res., 2, 62–90. https://doi.org/10.1016/j.jher.2008.05.003 Search in Google Scholar

Nikora, N., Nikora, V., O’Donoghue, T., 2013. Velocity profiles in vegetated open-channel flows: combined effects of multiple mechanisms. J. Hydraul. Eng., 139, 1021–1032. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000779 Search in Google Scholar

Noarayanan, L., Murali, K., Sundar, V., 2012. Manning’s ‘n’ coefficient for flexible emergent vegetation in tandem configuration. J. Hydro-Environ. Res., 6, 51–62. https://doi.org/10.1016/j.jher.2011.05.002 Search in Google Scholar

Osterkamp, W.R., Hupp, C.R., 2010. Fluvial processes and vegetation – Glimpses of the past, the present, and perhaps the future. Geomorphology, 116, 274–285. https://doi.org/10.1016/j.geomorph.2009.11.018 Search in Google Scholar

Poggi, D., Krug, C., Katul, G.G., 2009. Hydraulic resistance of submerged rigid vegetation derived from first-order closure models: hydraulic resistance of submerged rigid vegetation. Water Resour. Res., 45. https://doi.org/10.1029/2008WR007373 Search in Google Scholar

Rowiński, P.M., Kubrak, J., 2002. A mixing-length model for predicting vertical velocity distribution in flows through emergent vegetation. Hydrol. Sci., J. 47, 893–904. https://doi.org/10.1080/02626660209492998 Search in Google Scholar

Schlichting, H., Gersten, K., 1979. Boundary-Layer Theory. McGraw-Hill, New York. Search in Google Scholar

Stephan, U., Gutknecht, D., 2002. Hydraulic resistance of submerged flexible vegetation. J. Hydrol., 269, 27–43. https://doi.org/10.1016/S0022-1694(02)00192-0 Search in Google Scholar

Stoesser, T., Kim, S.J., Diplas, P., 2010. Turbulent flow through idealized emergent vegetation. J. Hydraul. Eng. 136, 1003–1017. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000153 Search in Google Scholar

Stone, B.M., Shen, H.T., 2002. Hydraulic resistance of flow in channels with cylindrical roughness. J. Hydraul. Eng., 128, 500–506. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500) Search in Google Scholar

Tanino, Y., Nepf, H.M., 2008. Laboratory investigation of mean drag in a random array of rigid, emergent cylinders. J. Hydraul. Eng., 134, 34–41. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(34) Search in Google Scholar

Tang, H.W., Yan, J., Xiao, Y., Lu, S.Q.,2007. Manning’s roughness coefficient of vegetated channels. J. Hydraul. Eng., 38, 11, 1347–1353. (In Chinese.) Search in Google Scholar

Tinoco, R.O., Cowen, E.A., 2013. The direct and indirect measurement of boundary stress and drag on individual and complex arrays of elements. Exp. Fluids, 54, 1509. https://doi.org/10.1007/s00348-013-1509-3 Search in Google Scholar

Vargas-Luna, A., Crosato, A., Calvani, G., Uijttewaal, W.S.J., 2016. Representing plants as rigid cylinders in experiments and models. Adv. Water Resour., 93, 205–222. https://doi.org/10.1016/j.advwatres.2015.10.004 Search in Google Scholar

Wang, H., Tang, H.W., Yuan, S.Y., Lv, S.Q., Zhao, X.Y., 2014. An experimental study of the incipient bed shear stress partition in mobile bed channels filled with emergent rigid vegetation. Sci. China-Technol. Sci., 57, 1165–1174. https://doi.org/10.1007/s11431-014-5549-6 Search in Google Scholar

Wang, J.S., Liu, X.G., Min, F.Y., Dai, J., Jiang, X., 2022. Turbulence structure and longitudinal velocity distribution of open channel flows with reedy emergent vegetation. Ecohydrol., 15. https://doi.org/10.1002/eco.2352 Search in Google Scholar

Wohl, E., Angermeier, P.L., Bledsoe, B., Kondolf, G.M., MacDonnell, L., Merritt, D.M., Palmer, M.A., Poff, N.L., Tarboton, D., 2005. River restoration: opinion. Water Resour. Res., 41. https://doi.org/10.1029/2005WR003985 Search in Google Scholar

Wu, F.C., Shen, H.W., Chou, Y.J., 1999. Variation of roughness coefficients for unsubmerged and submerged vegetation. J. Hydraul. Eng., 125, 934–942. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(934) Search in Google Scholar

Wu, F.S., 2008. Characteristics of flow resistance in open channels with non-submerged rigid vegetation. J. Hydrodyn., 20, 239–245. https://doi.org/10.1016/S1001-6058(08)60052-9 Search in Google Scholar

Wu, W.M., He, Z.G., 2009. Effects of vegetation on flow conveyance and sediment transport capacity. Int. J. Sediment Res., 24, 247–259. https://doi.org/10.1016/S1001-6279(10)60001-7 Search in Google Scholar

Yang, Z.H., Li, D., Huai, W.X., Liu, J.H., 2019. A new method to estimate flow conveyance in a compound channel with vegetated floodplains based on energy balance. J. Hydrol., 575, 921–929. https://doi.org/10.1016/j.jhydrol.2019.05.078 Search in Google Scholar

Zhao, K.F., Cheng, N.S., Huang, Z.H., 2014a. Experimental study of free-surface fluctuations in open-channel flow in the presence of periodic cylinder arrays. J. Hydraul. Res., 52, 465–475. https://doi.org/10.1080/00221686.2014.880858 Search in Google Scholar

Zhao, K.F., Cheng, N.S., Wang, X.K., Tan, S.K., 2014b. Measurements of fluctuation in drag acting on rigid cylinder array in open channel flow. J. Hydraul. Eng., 140, 48–55. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000811 Search in Google Scholar

Zhao, M.D., Fan, Z.L., 2019. Emergent vegetation flow with varying vertical porosity. J. Hydrodyn., 31, 1043–1051. https://doi.org/10.1007/s42241-018-0083-9 Search in Google Scholar

Zhang, Y.G., Wang, P., Cheng, J.H., Wang, W.J., Zeng, L., Wang, B., 2020. Drag coefficient of emergent flexible vegetation in steady nonuniform flow. Water Resour. Res., 56. https://doi.org/10.1029/2020WR027613 Search in Google Scholar

eISSN:
1338-4333
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other