Accès libre

Spectral analysis of oscillatory wind wave parameters in fetch-limited deep-water conditions at a small reservoir and their prediction: Case Study of the Hulín Reservoir in the Czech Republic

À propos de cet article

Citez

Alves, J.H.G.M., Banner, M.L., Young, I.R., 2003. Revisiting the Pierson-Moskowitz Asymptotic Limits for Fully Developed Wind Waves. Journal of Physical Oceanography, 33, 7, 1301–1323. Search in Google Scholar

Bretschneider, C.L., 1959. Wave variability and wave spectra for wind-generated gravity waves. Technical Memorandum No. 118. Beach Erosion Board, U.S. Army Corps of Engineers, 196 p. Search in Google Scholar

Brodtkorb, P.A., Johannesson, P., Lindgren, G., Rychlik, I., Rydén, J., Sjo, E., 2000. WAFO – a Matlab toolbox for analysis of random waves and loads. Paper no. ISOPE 2000-GFC-02, 8 p. Search in Google Scholar

BS-MS, 1993. British Standard, Maritime Structures (BS-MS). Part 1: Code of practice for general criteria. BS 6349-1:200. Search in Google Scholar

Carter, D.J.T., 1982. Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engineering, 9, 1, 17–33. Search in Google Scholar

CAS, 2022. Institute of Atmospheric Physics. Available: http://vitr.ufa.cas.cz/male-vte/ (accessed on 11 November 2022). Search in Google Scholar

CSN 75 0255, 1988. Calculation of Wave Effects on Hydrotechnic Structures on Water Reservoirs. Czechoslovakia, 32 p. (In Czech). Available online: http://technicke-normy-csn.cz/750255-csn-75-0255_4_31249.html (accessed on 11 November 2022). Search in Google Scholar

Donelan, M.A., 1980. Similarity theory applied to the forecasting if wave heights, periods and directions. In: Proceedings Canadian Coastal Conference. National Research Council, Canada. Search in Google Scholar

Etemad-Shahidi, A., Kazeminezhad, M.H., Mousavi, S.J., 2009. On the prediction using simplified methods. Journal of Coastal Research, 1, Special Issue 56, 505–509. Search in Google Scholar

Hanslian, D., Hošek, J., Chládová, Z., Pop, L., 2013. Wind conditions in the Czech Republic at a height of 10 m above the surface I. (In Czech.) Available: https://oze.tzb-info.cz/vetrna-energie/9770-vetrne-podminky-v-ceske-republice-ve-vysce-10-mnad-povrchem-i (accessed on 11 November 2022). Search in Google Scholar

Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D.J., Richter, K., Sell, W., Walden, H., 1973. Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP). UDO 551.466.31. ANE German Bight, Deutsches Hydrographisches Institut, Hamburg, Germany, 94 p. Search in Google Scholar

Choi, B.-Y., Jo, H.-J., Lee, K.-H., Byoun, D.-H., 2018. Development of Wind Induced Wave Predict Using Revisited Methods. Journal of Advanced Research in Ocean Engineering, 4, 3, 124–134. Search in Google Scholar

Kazeminezhad, M.H., Etemad-Shahidi, A., Mousavi, S.J., 2005. Application of fuzzy inference system in the prediction of wave parameters. Ocean Engineering, 32, 14–15, 1709–1725. Search in Google Scholar

Klaus, H., Olbers, D.J., 1973. Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP), pp. 2–95. Search in Google Scholar

Kotaška, S., 2019. Measurement of wind oscillatory waves on reservoir. Master’s Thesis. Brno University of Technology. Faculty of Civil Engineering. Department of Water Structures Brno, 101 p. (In Czech.) Available online: http://hdl.handle.net/11012/137529. (accessed on 11 November 2022). Search in Google Scholar

Krylov, Y.M., Strekalov, S.S., Tsyplukhin, V.F., 1976. Wind Waves and Their Impact on Structures. Gidrometeoizdat, Leningrad, 255 p. (In Russian.) Search in Google Scholar

Le Méhauté, B., 1976. An Introduction to Hydrodynamics and Water Waves. Springer-Verlag. Search in Google Scholar

Mahmood, M.F, Henderson, D., Segur, H., 2010. Water Waves Theory and Experiment. In: Proceedings of the Conference. World Scientific Publishing Co., River Edge, NJ, USA, pp. 79–81. Search in Google Scholar

Marinet, 2015. Best Practice Manual for Wave Simulation. WP2: Marine Energy System Testing – Standardisation and Best Practice. Version 3, 47 p. Search in Google Scholar

MATLAB, 2022. Matlab version 9.12.0 (R2022a). The MathWorks Inc, Natick, Massachusetts. Search in Google Scholar

McCormick, M.E., 1998. On the Use of Wind-Wave Spectral Formulas to Estimate Wave Energy Resources. Journal of Energy Resources Technology, 120, 314–317. Search in Google Scholar

Michel, W.H., 1968. Sea Spectra Simplified. In: Proc. Meeting of the Gulf Section of the Society of Naval Architects and Marine Engineers. Search in Google Scholar

Nash, J.E.; Sutcliffe, J.V., 1970. River flow forecasting through conceptual model. Part 1 – A discussion of principles. Journal of Hydrology, 10, 282–290. Search in Google Scholar

NDBC, 2022. National Data Buoy Center. Available: https://www.ndbc.noaa.gov (accessed on 11 November 2022). Search in Google Scholar

OCADIJ, 2002. Overseas Coastal Area Development Institute of Japan (OCADIJ). Technical Standards and Commentaries for Port and Harbor Facilities in Japan. Japan, 664 p. Search in Google Scholar

Ochi, M.K., Hubble, E.N., 1976. Six-parameter wave spectra. In: Proc. Int. Conf. Coastal. Eng. 1, 15, pp. 301–328. Search in Google Scholar

Owen, M.W., Steele, A.A.J., 1988. Wave prediction in reservoirs, comparison of available methods. Report EX 1809, HR Walling-ford, 110 p. Available online: https://eprints.hrwalling-ford.com/179/ (accessed on 11 November 2022). Search in Google Scholar

Ozeren, Y., Wren, D., 2009. Predicting wind-driven waves in small reservoirs. American Society of Agricultural and Biological Engineers (ASABE), 51, 5, 1599–1612. Search in Google Scholar

Pelikán, P., Marková, J., 2013. Wind effect on water surface of water reservoirs. Acta Univ. Agric. Silvic. Mendel. Brun., 61, 6, 1823–1828. Search in Google Scholar

Pelikán, P., Šlezingr, M., 2015. Parameters of wind-driven waves on Nove Mlyny water reservoir. In: Proc. Conf. Water Management and Hydraulic Engineering 2015. Institute of Water Structures, FCE, BUT, Brno, Czech Republic, pp. 55–64. Search in Google Scholar

Pelikán, P., Koutný, L., 2016. Hindcast of wind driven wave heights in water reservoirs. Soil Water Res., 11, 3, 205–211. Search in Google Scholar

Pelikán, P., Hubačíková, V., Kaletova, T., Fuska, J., 2020. Comparative assessment of different modelling schemes and their applicability to inland small reservoirs: A Central Europe case study. Sustainability, 12, 14 pp. Search in Google Scholar

Pelikán, P., Špano, M., Čejda, M., 2020. Equipment for measuring and transmitting data of wind oscillating waves on water reservoirs (In Czech: Zařízení pro měření a přenos dat větrových oscilačních vln na vodních nádržích.). Utility model, Office industry property Czech Republic, 7 p. Available online: https://isdv.upv.cz/doc/FullFiles/UtilityModels/FullDocuments/FDUM0034/uv034513.pdf (accessed on 11 November 2022). Search in Google Scholar

Phillips, O.M., 1958. The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech., 4, 426–434. Search in Google Scholar

Říha, J., Špano, M., 2012. The influence of current on the height of wind wave run-up, a comparison of experimental results with the Czech National Standard. J. Hydrol. Hydromech., 60, 3, 174–184. Saville, T., McClendon, E.W., Cochran, A.L., 1962. Freeboard allowances for waves in inland reservoirs. Journal of Waterways and Harbors Division, ASCE, 88, 2, 93–124. Search in Google Scholar

Sibul, O., 1955. Laboratory Study of the Generation of Wind Waves in Shallow Water. Technical Memo No. 72. U.S. Army Corps of Engineers Beach Erosion Board, p. 35. Search in Google Scholar

Smith, J.M., 1991. Wind-Wave Generation on Restricted Fetches. Miscellaneous Paper CERC-91-2. US Army Waterways Experiment Station, Vicksburg, MS. Search in Google Scholar

SPM, 1977. United States Army Corps of Engineers and Coastal Engineering Research Center (U.S. Army, 1977). Shore Protection Manual (SPM). Department of the Army, Waterways Experiment Station, Corps of Engineers, Coastal Engineering Research Center. Search in Google Scholar

SPM, 1984. United States Army Corps of Engineers and Coastal Engineering Research Center (U.S. Army, 1984). Shore Protection Manual, Department of the Army, Waterways Experiment Station, Corps of Engineers, Coastal Engineering Research Center, 652 p. Search in Google Scholar

Stoica, P., Moses, R., 2005.Spectral analysis of signals. Prentice Hall, Upper Saddle River, New Jersey 07458, USA, 447 p. ISBN 0-13-113956-8. Search in Google Scholar

Sverdrup, H.V., Munk, W.H., 1947. Wind, sea, and swell: Theory of relations for forecasting. Hydrographic Office Pub. 60, US Navy. Search in Google Scholar

Špano, M., 2019. Protection of embankments and banks against action caused by oscillatory wind waves. In: Proceedings of the ICOLD 2019 Symposium 9.-14.6.2019 Ottawa, Canada. Sustainable and Safe Dams Around the World. ICOLD/CIGB. Paris, France, pp. 3095–3102. Search in Google Scholar

Špano, M., Duchan, D., Kotaška, S., Skřečková, K., Prokopová, E., Pelikán, P., Hrůza, O., Seidl, R., Dvořáková, S., Švancara, J., Čejda, M., 2020. Protection of water structures and natural banks against the effects of oscillating wind waves. (In Czech: Ochrana konstrukcí vodních staveb a přirozených břehů před účinky oscilačních větrových vln.) Partial report of TH03030182: Protection of hydraulic structures against action caused by oscilatory wind waves. Brno: BUT, TAČR No. I/2020, 56 p. Search in Google Scholar

Špano, M., Duchan, D., 2021. Threat to embankments and natural banks posed by oscillatory wind waves. Gospodarka wodna, 873, 9, 10–16. Search in Google Scholar

Špano, M., Bornschein, A., Pohl, R., Říha, J., Schuttrumpf, H., 2022. Wave run-ups and overtopping affected by oblique wave approaches and currents. Slovak Journal of Civil Engineering, 30, 2, 12–21. Search in Google Scholar

Torsethaugen, K., 1993. Two peak wave spectrum model. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE, (2), pp. 2–10. Search in Google Scholar

Vincent, C.L., Demirbilek Z., Weggel, J.R., 2002. Coastal Engineering Manual: Part II. Coastal Hydrodynamics. Engineer Manual 1110‐2‐1100. U.S. Army Corps of Engineers, Washington, D.C., 623 p. Search in Google Scholar

WAFO GROUP, 2017. A Matlab Toolbox for Analysis of Random Waves and Loads. Tutorial for WAFO version 2017. Lund University, Faculty of Engineering, Centre for Mathematical sciences, Mathematical statistics, 195 p. Search in Google Scholar

Wilson, B.W., 1955. Graphical approach to the forecasting of waves in moving fetches. U.S. Army. Tech. Mem., No. 73. Beach Erosion Board, Corps of Engrs., 31 p. Search in Google Scholar

Wilson, B.W., 1965. Numerical prediction of ocean waves in the North Atlantic for December, 1959. Deutsche Hydrographische Z., 18, 3, 114–130. Search in Google Scholar

Yarde, A.J., Banyard, L.S., Allsop, N.W.H., 1996. Reservoir dams: wave conditions, wave overtopping and slab protection. HR Wallingford, no. CAS 0021, 62 p. Search in Google Scholar

eISSN:
1338-4333
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other