Accès libre

Evaluation of precipitation measurements using a standard rain gauge in relation to data from a precision lysimeter

À propos de cet article

Citez

Almikaeel, W., Čubanová, L., Šoltész, A., 2022. Hydrological drought forecasting using machine learning – Gidra River case study. Water, 14, 387. https://doi.org/10.3390/w14030387Search in Google Scholar

Antonini, A., Melani, S., Mazza, A., Baldini, L., Adirosi, E., Ortolani, A., 2022. Development and calibration of a low-cost, piezoelectric rainfall sensor through machine learning. Sensors, 22, 6638. https://doi.org/10.3390/s22176638Search in Google Scholar

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F., 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data, 5, 180214. https://doi.org/10.1038/sdata.2018.214Search in Google Scholar

Fang, G.H., Yang, J., Chen, Y.N., Zammit, C., 2015. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences, 19, 2547–2559. https://doi.org/10.5194/hess-19-2547-2015Search in Google Scholar

Gebler, S., Hendricks Franssen, H.-J., Pütz, T., Post, H., Schmidt, M., Vereecken, H., 2015. Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket. Hydrology and Earth System Sciences, 19, 2145–2161. https://doi.org/10.5194/hess-19-2145-2015Search in Google Scholar

Gomes, E.P., Blanco, C.J.C., 2021. Daily rainfall estimates considering seasonality from a MODWT-ANN hybrid model. Journal of Hydrology and Hydromechanics, 69, 13–28. https://doi.org/10.2478/johh-2020-0043Search in Google Scholar

Groh, J., Slawitsch, V., Herndl, M., Graf, A., Vereecken, H., Pütz, T., 2018. Determining dew and hoar frost formation for a low mountain range and alpine grassland site by weighable lysimeter. Journal of Hydrology, 563, 372–381. https://doi.org/10.1016/j.jhydrol.2018.06.009Search in Google Scholar

Haselow, L., Meissner, R., Rupp, H., Miegel, K., 2019. Evaluation of precipitation measurements methods under field conditions during a summer season: A comparison of the standard rain gauge with a weighable lysimeter and a piezoelectric precipitation sensor. Journal of Hydrology, 575. https://doi.org/10.1016/j.jhydrol.2019.05.065Search in Google Scholar

Hoffmann, M., Schwartengräber, R., Wessolek, G., Peters, A., 2016. Comparison of simple rain gauge measurements with precision lysimeter data. Atmospheric Research, 174–175, 120–123. https://doi.org/10.1016/j.atmosres.2016.01.016Search in Google Scholar

Hu, C., Ran, G., Li, G., Yu, Y., Wu, Q., Yan, D., Jian, S., 2021. The effects of rainfall characteristics and land use and cover change on runoff in the Yellow River basin, China. Journal of Hydrology and Hydromechanics, 69, 29–40. https://doi.org/10.2478/johh-2020-0042Search in Google Scholar

Islam, T., Rico-Ramirez, M.A., Han, D., Srivastava, P.K., 2012. A Joss–Waldvogel disdrometer derived rainfall estimation study by collocated tipping bucket and rapid response rain gauges. Atmospheric Science Letters, 13, 139–150. https://doi.org/10.1002/asl.376Search in Google Scholar

Kohfahl, C., Saaltink, M.W., 2020. Comparing precision lysimeter rainfall measurements against rain gauges in a coastal dune belt, Spain. Journal of Hydrology, 591, 125580. https://doi.org/10.1016/j.jhydrol.2020.125580Search in Google Scholar

Markovič, L., Faško, P., Pecho, J., 2021. Climatology of the extreme heavy precipitation events in Slovakia in the 1951–2020 period. Acta Hydrologica Slovaca, 22, 294–303. https://doi.org/10.31577/ahs-2021-0022.02.0033Search in Google Scholar

Meissner, R., Seeger, J., Rupp, H., Seyfarth, M., Borg, H., 2007. Measurement of dew, fog, and rime with a high-precision gravitation lysimeter. Journal of Plant Nutrition and Soil Science, 170, 335–344. https://doi.org/10.1002/jpln.200625002 Search in Google Scholar

Michelson, D.B., 2004. Systematic correction of precipitation gauge observations using analyzed meteorological variables. Journal of Hydrology, 290, 161–177. https://doi.org/10.1016/j.jhydrol.2003.10.005Search in Google Scholar

Morgan, D.L., Lourence, F.J., 1969. Comparison between rain gage and lysimeter measurements. Water Resources Research, 5, 724–728. https://doi.org/10.1029/WR005i003p00724Search in Google Scholar

Nolz, R., Kammerer, G., Cepuder, P., 2013. Interpretation of lysimeter weighing data affected by wind. Journal of Plant Nutrition and Soil Science, 176, 200–208. https://doi.org/10.1002/jpln.201200342Search in Google Scholar

Nolz, R., Cepuder, P., Kammerer, G., 2014. Determining soil water-balance components using an irrigated grass lysimeter in NE Austria. Journal of Plant Nutrition and Soil Science, 177, 237–244. https://doi.org/10.1002/jpln.201300335Search in Google Scholar

O’Keeffe, J., Marcinkowski, P., Utratna, M., Piniewski, M., Kardel, I., Kundzewicz, Z.W., Okruszko, T., 2019. Modelling climate change’s impact on the hydrology of Natura 2000 wetland habitats in the Vistula and Odra River Basins in Poland. Water, 11, 2191. https://doi.org/10.3390/w11102191Search in Google Scholar

Peters, A., Nehls, T., Schonsky, H., Wessolek, G., 2014. Separating precipitation and evapotranspiration from noise -a new filter routine for high-resolution lysimeter data. Hydrology and Earth System Sciences, 18, 1189–1198. https://doi.org/10.5194/hess-18-1189-2014Search in Google Scholar

Peters, A., Nehls, T., Wessolek, G., 2016. Technical note: Improving the AWAT filter with interpolation schemes for advanced processing of high resolution data. Hydrology and Earth System Sciences, 20, 2309–2315. https://doi.org/10.5194/hess-20-2309-2016Search in Google Scholar

Peters, A., Groh, J., Schrader, F., Durner, W., Vereecken, H., Pütz, T., 2017. Towards an unbiased filter routine to determine precipitation and evapotranspiration from high precision lysimeter measurements. Journal of Hydrology, 549, 731–740. https://doi.org/10.1016/j.jhydrol.2017.04.015Search in Google Scholar

Richter, D., 1995. Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Messfehlers des Hellmann-Niederschlagsmessers. Berichte des Deutschen WetterdienstesSearch in Google Scholar

Savitzky, A., Golay, M.J.E., 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36, 1627–1639. https://doi.org/10.1021/ac60214a047Search in Google Scholar

Schnepper, T., Groh, J., Gerke, H. H., Reichert, B., Pütz, T., 2022. Evaluation of precipitation measurement methods using data from precision lysimeter network. Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-2022-370, in reviewSearch in Google Scholar

Schrader, F., Durner, W., Fank, J., Gebler, S., Pütz, T., Hannes, M., Wollschläger, U., 2013. Estimating precipitation and actual evapotranspiration from precision lysimeter measurements. Procedia Environmental Sciences, 19, 543–552. https://doi.org/10.1016/j.proenv.2013.06.061Search in Google Scholar

Sevruk, B., 1982. Methods of correction for systematic error in point precipitation measurement for operational use. World Meteorological Organization, Geneva, Switzerland.Search in Google Scholar

Sevruk, B., 1996. Adjustment of tipping-bucket precipitation gauge measurements. Atmospheric Research, 42, 237–246. https://doi.org/10.1016/0169-8095(95)00066-6Search in Google Scholar

Sevruk, B., Hertig, J.-A., Spiess, R., 1991. The effect of a precipitation gauge orifice rim on the wind field deformation as investigated in a wind tunnel. Atmospheric Environment. Part A. General Topics, 25, 1173–1179. https://doi.org/10.1016/0960-1686(91)90228-YSearch in Google Scholar

SHMI, 2015. Climate Atlas of Slovakia. Slovak Hydrometeorological Institute, Banská Bystrica.Search in Google Scholar

Sleziak, P., Jančo, M., Danko, M., Méri, L., Holko, L., 2023. Accuracy of radar-estimated precipitation in a mountain catchment in Slovakia. Journal of Hydrology and Hydromechanics, 71, 111–122. https://doi.org/10.2478/johh-2022-0037Search in Google Scholar

Sokol, Z., Szturc, J., Orellana-Alvear, J., Popová, J., Jurczyk, A., Célleri, R., 2021. The role of weather radar in rainfall estimation and its application in meteorological and hydrological modelling – A review. Remote Sensing, 13, 351. https://doi.org/10.3390/rs13030351Search in Google Scholar

Šoltész, A., Zeleňáková, M., Čubanová, L., Šugareková, M., Abd-Elhamid, H., 2021. Environmental impact assessment and hydraulic modelling of different flood protection measures. Water, 13, 786. https://doi.org/10.3390/w13060786Search in Google Scholar

Tall, A., Pavelková, D., 2020. Results of water balance measurements in a sandy and silty-loam soil profile using lysimeters. Journal of Water and Land Development, 45, 179–184. https://doi.org/10.24425/jwld.2020.133492Search in Google Scholar

Tall, A., Kandra, B., Gomboš, M., Pavelková, D., 2018. Kvantifikácia hydrologických procesov pomocou lyzimetra [Quantification of hydrological processes using a lysimeter]. In: Brezianská, K., Orfánus, T. (Eds.): Aktuálne problémy zóny aerácie pôdy v podmienkach prebiehajúcej klimatickej zmeny. Veda, Bratislava, pp. 285–306.Search in Google Scholar

Vaughan, P.J., Ayars, J.E., 2009. Noise reduction methods for weighing lysimeters. Journal of Irrigation and Drainage Engineering, 135, 235–240. https://doi.org/10.1061/(ASCE)0733-9437(2009)135:2(235)Search in Google Scholar

WMO, 2021. Guide to Instruments and Methods of Observation (WMO-No. 8). World Meteorological Organization, Geneva. Search in Google Scholar

Yang, D., Goodison, B., Metcalfe, J., Louie, P., Elomaa, E., Hanson, C., Golubev, V., Gunther, T., Milkovic, J., Lapin, M., 2001. Compatibility evaluation of national precipitation gage measurements. Journal of Geophysical Research: Atmospheres, 106, 1481–1491. https://doi.org/10.1029/2000JD900612Search in Google Scholar

eISSN:
1338-4333
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other