À propos de cet article

Citez

Aravena, J., Dussaillant-Jones, A., 2009. Stormwater infiltration and focused recharge modeling with finite-volume two-dimensional Richards equation: application to an experimental rain garden. Journal of Hydraulic Engineering, 135, 12. https://doi.org/10.1061/ASCEHY.1943-7900.000011110.1061/(ASCE)HY.1943-7900.0000111Search in Google Scholar

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K., Schindelin, J., Cardona, A., Seung, H., 2017. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics, 33, 15, 2424–2426. https://doi.org/10.1093/bioinformatics/btx18010.1093/bioinformatics/btx180Search in Google Scholar

Archer, N.A.L., Quinton, J.N., Hess, T.M., 2002. Below-ground relationships of soil texture, roots and hydraulic conductivity in two-phase mosaic vegetation in South-east Spain. Journal of Arid Environments, 52, 535–553. https://doi.org/10.1006/jare.2002.101110.1006/jare.2002.1011Search in Google Scholar

Austin, G., 2012. Design and performance of bioretention beds for removal of stormwater contaminants. Journal of Green Building, 7, 1, 17–27.10.3992/jgb.7.1.17Search in Google Scholar

Bioretention Manual, 2003. Department of Environmental Resources, Maryland. Environmental Services Division, Department of Environmental Resources, The Prince George’s County, Maryland.Search in Google Scholar

Booth, D., Hartley, D., Jackson, C. 2002. Forest cover, impervious-surface area, and the mitigation of stormwater impacts. Journal of the American Water Resources Association, 38, 835–845. https://doi.org/10.1111/j.1752-1688.2002.tb01000.x10.1111/j.1752-1688.2002.tb01000.xSearch in Google Scholar

Bortolini, L., Zanin, G., 2017. The experimental and educational rain gardens of the Agripolis Campus (north-east Italy): preliminary results on hydrological and plant behavior. Acta Horticulturae, 531–536. https://doi.org/10.17660/ActaHortic.2017.1189.10610.17660/ActaHortic.2017.1189.106Search in Google Scholar

Bortolini, L., Zanin, G., 2018. Hydrological behaviour of the rain gardens and plant suitability: A study in the Veneto plane (north-eastern Italy) conditions. Urban Forestry & Urban Greening, 37. https://doi.org/10.1016/j.ufug.2018.07.00310.1016/j.ufug.2018.07.003Search in Google Scholar

Brander, K., Owen, K., Potter, K., 2004. Modeled impacts of development type on runoff volume and infiltration performance. Journal of the American Water Resources Association, 40, 961–969. https://doi.org/10.1111/j.1752-1688.2004.tb01059.x10.1111/j.1752-1688.2004.tb01059.xSearch in Google Scholar

Brown, R., Hunt, W., 2012. Improving bioretention/Biofiltration performance with restorative maintenance. Water Science and Technology, 65, 361–367. https://doi.org/10.2166/wst.2012.86010.2166/wst.2012.860Search in Google Scholar

Casagrande, A., 1934. Die Aräometer-Methode zur bestim-mung der Kornverteilung von Böden und anderen Materia-lien. Julius Springer, Berlin. (In German.)10.1007/978-3-642-91247-4Search in Google Scholar

Cislerova, M., Simunek, J., Vogel, T., 1988. Changes of steady state infiltration rate in recurrent ponded infiltration experiments. Journal of Hydrology, 104, 1–16. https://doi.org/10.1016/0022-1694(88)90154-010.1016/0022-1694(88)90154-0Search in Google Scholar

Coffman, L.S., France, R.L., 2002. Low-impact development: an alternative stormwater management technology. In: Handbook of Water Sensitive Planning and Design, pp. 97–123.10.1201/9781420032420.ch1.5Search in Google Scholar

Davis, A., 2008. Field performance of bioretention: Hydrology impacts. Journal of Hydrologic Engineering, 13, 90. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2-9010.1061/(ASCE)1084-0699(2008)13:2(90)Search in Google Scholar

DeBusk, K.M., Wynn, T.M., 2011. Storm-water bioretention for runoff quality and quantity mitigation. Journal of Environmental Engineering-ASCE, 137, 800–808. https://doi.org/10.1061/(asce)ee.1943-7870.000038810.1061/(ASCE)EE.1943-7870.0000388Search in Google Scholar

Dietrich, A., Yarlagadda, R., Gruden, C., 2017. Estimating the potential benefits of green stormwater infrastructure on developed sites using hydrologic model simulation. Environmental Progress & Sustainable Energy, 36, 2, 557–564. https://doi.org/10.1002/ep.1242810.1002/ep.12428Search in Google Scholar

Dietz, M.E., 2007. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollution, 186, 351–363. https://doi.org/10.1007/s11270-007-9484-z10.1007/s11270-007-9484-zSearch in Google Scholar

Dietz, M.E., Clausen, J.C., 2005. A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollution, 167, 123–138. https://doi.org/10.1007/s11270-005-8266-8.10.1007/s11270-005-8266-8Search in Google Scholar

Emerson, C.H., Traver, R.G., 2008. Multiyear and seasonal variation of infiltration from storm-water best management practices. Journal of Irrigation and Drainage Engineering, 134, 598–605. https://doi.org/10.1061/(asce)0733-9437(2008)134:5(598)10.1061/(ASCE)0733-9437(2008)134:5(598)Search in Google Scholar

Facility for Advancing Water Biofiltration (FAWB), 2009. Adoption Guidelines for Stormwater Biofiltration Systems. Facility for Advancing Water Biofiltration, Monash University, June 2009.Search in Google Scholar

Filipović, V., Mallmann, F., Coquet, Y., Simunek, J., 2014. Numerical simulation of water flow in tile and mole drainage systems. Agricultural Water Management, 146, 105–114. https://doi.org/10.1016/j.agwat.2014.07.02010.1016/j.agwat.2014.07.020Search in Google Scholar

Fletcher, T.D., Shuster, W., Hunt, W.F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.L., Mikkelsen, P.S., Rivard, G., Uhl, M., Dagenais, D., Viklander, M., 2015. SUDS, LID, BMPs, WSUD and more - The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12, 525–542. https://doi.org/10.1080/1573062x.2014.91631410.1080/1573062X.2014.916314Search in Google Scholar

Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice-Hall, Englewood Cliffs, N.J.Search in Google Scholar

Gulbaz, S., Kazezyilmaz-Alhan, C.M., 2017. Experimental investigation on hydrologic performance of LID with rainfall-watershed-bioretention system. Journal of Hydrologic Engineering, 22, 10. https://doi.org/10.1061/(asce)he.1943-5584.000145010.1061/(ASCE)HE.1943-5584.0001450Search in Google Scholar

Hatt, B.E., Fletcher, T.D., Deletic, A., 2009. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. Journal of Hydrology, 365, 310–321. https://doi.org/10.1016/j.jhydrol.2008.12.00110.1016/j.jhydrol.2008.12.001Search in Google Scholar

Hollis, G.E., 1977. Water yield changes after the urbanization of the canon’s brook catchment, Harlow, England. Hydro-logical Sciences Bulletin, 22, 1, 61–75. DOI: 10.1080/0262666770949169410.1080/02626667709491694Search in Google Scholar

Holman-Dodds, J., Bradley, A., Potter, K., 2007. Evaluation of hydrologic benefits of infiltration based urban storm water management. Journal of the American Water Resources Association, 39, 205–215. https://doi.org/10.1111/j.1752-1688.2003.tb01572.x10.1111/j.1752-1688.2003.tb01572.xSearch in Google Scholar

Hood, M., Clausen, J., Warner, G., 2007. Comparison of stormwater lag times for low impact and traditional residential development. Journal of the American Water Resources Association, 43, 1036–1046. https://doi.org/10.1111/j.1752-1688.2007.00085.x10.1111/j.1752-1688.2007.00085.xSearch in Google Scholar

Houdeshel, C.D., Hultine, K.R., Johnson, N.C., Porneroy, C.A., 2015. Evaluation of three vegetation treatments in bioretention gardens in a semi-arid climate. Landscape and Urban Planning, 135, 62–72. https://doi.org/10.1016/j.landurbplan.2014.11.00810.1016/j.landurbplan.2014.11.008Search in Google Scholar

Huber, W.C., 1995. EPA storm water management model-SWMM. In: Singh, V.P. (Ed.): Computer Models of Water-shed Hydrology. Water Resources Publications, pp. 783–808.Search in Google Scholar

Hunt, W., Smith, J., Jadlocki, S., Hathaway, J., Eubanks, P., 2008. Pollutant removal and peak flow mitigation by a bio-retention cell in urban Charlotte, N.C. Journal of Environmental Engineering, 134, 5, 403. https://doi.org/10.1061/(ASCE)0733-9372(2008)134:5(403)10.1061/(ASCE)0733-9372(2008)134:5(403)Search in Google Scholar

Imteaz, M.A., Nguyen, T., Kuok, K., 2015. Experimental and mathematical modelling study on clogging behaviour of bio-retention systems. International Journal of Hydrology Science and Technology, 5. https://doi.org/10.1504/IJHST.2015.06928010.1504/IJHST.2015.069280Search in Google Scholar

Jangorzo, N.S., Watteau, F., Schwartz, C., 2013. Evolution of the pore structure of constructed Technosols during early pedogenesis quantified by image analysis. Geoderma, 207, 180–192. https://doi.org/10.1016/j.geoderma.2013.05.01610.1016/j.geoderma.2013.05.016Search in Google Scholar

Jenkins, J.K.G., Wadzuk, B.M., Welker, A.L., 2010. Fines accumulation and distribution in a storm-water rain garden nine years postconstruction. Journal of Irrigation and Drainage Engineering, 136, 862–869. https://doi.org/10.1061/(asce)ir.1943-4774.000026410.1061/(ASCE)IR.1943-4774.0000264Search in Google Scholar

Kabelkova, I., Stransky, D., Bares, V., 2013. TNV 75 9011 Hospodareni se srazkovymi vodami = TNV 75 9011 Sustainable stormwater management. Part 1: Choice of the drainage concept and of the technical solution. Vodní hospodářství, 63, 9, 289–294.Search in Google Scholar

Kabisch, N., Korn, H., Stadler, J., Bonn, A., 2017. Nature-Based solutions to climate change adaptation in urban Areas—Linkages between science. Policy and Practice, 1–11. https://doi.org/10.1007/978-3-319-56091-5_110.1007/978-3-319-56091-5_1Search in Google Scholar

Klute, A., 1986. Water retention: Laboratory methods. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. American Society of Agronomy, Soil Science Society of America, Wisc., pp. 635–662. https://doi.org/10.2136/sssabookser5.1.2ed.c2610.2136/sssabookser5.1.2ed.c26Search in Google Scholar

Le Coustumer, S., Fletcher, T., Deletic, A., Barraud, S., Lewis, J., 2009. Hydraulic performance of biofilter systems for stormwater management: Influences of design and operation. Journal of Hydrology, 376, 16–23. https://doi.org/10.1016/j.jhydrol.2009.07.01210.1016/j.jhydrol.2009.07.012Search in Google Scholar

Le Coustumer, S., Fletcher, T.D., Deletic, A., Barraud, S., Poelsma, P., 2012. The influence of design parameters on clogging of stormwater biofilters: A large-scale column study. Water Res., 46, 6743–6752. https://doi.org/10.1016/j.watres.2012.01.02610.1016/j.watres.2012.01.026Search in Google Scholar

Li, H., Davis, A.P., 2008. Urban particle capture in bioretention media. I: Laboratory and field studies. Journal of Environmental Engineering, 134, 409–418. https://doi.org/10.1061/(asce)0733-9372(2008)134:6(409)10.1061/(ASCE)0733-9372(2008)134:6(409)Search in Google Scholar

Li, H., Davis, A.P., 2009. Water quality improvement through reductions of pollutant loads using bioretention. Journal of Environmental Engineering, 135, 567–576. https://doi.org/10.1061/(asce)ee.1943-7870.000002610.1061/(ASCE)EE.1943-7870.0000026Search in Google Scholar

Li, J., Zhao, R.S., Li, Y.J., Chen, L., 2018. Modeling the effects of parameter optimization on three bioretention tanks using the HYDRUS-1D model. Journal of Environmental Management, 217, 38–46. DOI: 10.1016/.jenvman.2018.03.07810.1016/j.jenvman.2018.03.078Search in Google Scholar

Liao, K.-H., Deng, S., Tan, P., 2017. Blue-green infrastructure: New frontier for sustainable urban stormwater management. In: Greening Cities. Springer, pp. 203–226. https://doi.org/10.1007/978-981-10-4113-6_1010.1007/978-981-10-4113-6_10Search in Google Scholar

Marsalek, J., Barnwell, T., Geiger, W., Grottker, M., Huber, W., Saul, A., Schilling, W., Torno, H., 1993. Urban drainage systems: design and operation. Water Science and Technology, 27, 31–70. https://doi.org/10.2166/wst.1993.029110.2166/wst.1993.0291Search in Google Scholar

Melbourne water, 2013. Water sensitive urban design guidelines. South Eastern Councils.Search in Google Scholar

Muerdter, C., Wong C., LeFevre G., 2018. Emerging investigator series: The role of vegetation in bioretention for storm-water treatment in the built environment: pollutant removal, hydrologic function, and ancillary benefits. Environmental Science: Water Research & Technology, 4, 592–612. DOI: 10.1039/C7EW00511C10.1039/C7EW00511CSearch in Google Scholar

Olszewski, J., Davis, A., 2012. Comparing the hydrologic performance of a bioretention cell with predevelopment values. Journal of Irrigation and Drainage Engineering, 139, 124–130. https://doi.org/10.1061/(ASCE)IR.1943-4774.000050410.1061/(ASCE)IR.1943-4774.0000504Search in Google Scholar

Paus, K.H., Muthanna, T.M., Braskerud, B.C., 2016. The hydrological performance of bioretention cells in regions with cold climates: seasonal variation and implications for design. Hydrology Research, 47, 291–304. https://doi.org/10.2166/nh.2015.08410.2166/nh.2015.084Search in Google Scholar

Princ, T., Fideles, H.M., Koestel, J., Snehota, M., 2020. The impact of capillary trapping of air on satiated hydraulic conductivity of sands interpreted by X-ray microtomography. Water, 12, 2, 445. https://doi.org/10.3390/w1202044510.3390/w12020445Search in Google Scholar

Qin, H., Li, Z., Fu, G., 2013. The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 129, 577–585. https://doi.org/10.1016/j.jenvman.2013.08.02610.1016/j.jenvman.2013.08.026Search in Google Scholar

Recanatesi, F., Petroselli, A., Ripa, M., Leone, A., 2017. Assessment of stormwater runoff management practices and BMPs under soil sealing: A study case in a peri-urban water-shed of the metropolitan area of Rome (Italy). Journal of Environmental Management, 201, 6–18. https://doi.org/10.1016/j.jenvman.2017.06.02410.1016/j.jenvman.2017.06.024Search in Google Scholar

Reginato, R., Bavel, C., 1962. Pressure cell for soil cores. Soil Science Society of America Journal, 26. https://doi.org/10.2136/sssaj1962.03615995002600010001x10.2136/sssaj1962.03615995002600010001xSearch in Google Scholar

Roseen, R., Ballestero, T., Houle, J., Avelleneda, P., Wildey, R., Briggs, J., 2006. Storm water low-impact development, conventional structural, and manufactured treatment strategies for parking lot runoff: performance evaluations under varied mass loading conditions. Journal of the Transportation Research Board, 1984, 135–147. https://doi.org/10.1177/036119810619840011310.1177/0361198106198400113Search in Google Scholar

Scalenghe, R., Ferraris, S., 2009. The first forty years of a Technosol. Pedosphere, 19, 40–52. https://doi.org/10.1016/s1002-0160(08)60082-x10.1016/S1002-0160(08)60082-XSearch in Google Scholar

Sere, G., Ouvrard, S., Magnenet, V., Pey, B., Morel, J.L., Schwartz, C., 2012. Predictability of the evolution of the soil structure using water flow modeling for a constructed Technosol. Vadose Zone Journal, 11, 13. https://doi.org/10.2136/vzj2011.006910.2136/vzj2011.0069Search in Google Scholar

Shrestha, P., 2018. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecological Engineering, 112. https://doi.org/10.1016/j.ecoleng.2017.12.00410.1016/j.ecoleng.2017.12.004Search in Google Scholar

Schaap, M., Leij, F., Van Genuchten, M., 2001. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251, 163–176. https://doi.org/10.1016/S0022-1694(01)00466-810.1016/S0022-1694(01)00466-8Search in Google Scholar

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: An Open-Source Platform for Biological-Image Analysis. Nature Methods, 9, 676–682. https://doi.org/10.1038/nmeth.201910.1038/nmeth.2019385584422743772Search in Google Scholar

Skala, V., Dohnal, M., Votrubova, J., Vogel, T., Dusek, J., Sacha, J., Jelinkova, V., 2020. Hydrological and thermal regime of a thin green roof system evaluated by physically-based model. Urban Forestry & Urban Greening, 48, 126582. https://doi.org/10.1016/j.ufug.2020.12658210.1016/j.ufug.2020.126582Search in Google Scholar

Snehota, M., Cislerova, M., Amin, M.H.G., Hall, L.D., 2010. Tracing the entrapped air in heterogeneous soil by means of magnetic resonance imaging. all rights reserved. Vadose Zone Journal, 9, 2, 373–384. https://doi.org/10.2136/vzj2009.010310.2136/vzj2009.0103Search in Google Scholar

Snehota, M., Jelinkova, V., Sobotkova, M., Sacha, J., Vontobel, P., Hovind, J., 2015. Water and entrapped air redistribution in heterogeneous sand sample: Quantitative neutron imaging of the process. Water Resources Research, 51, 2, 1359–1371. https://doi.org/10.1002/2014WR01543210.1002/2014WR015432Search in Google Scholar

Snehota, M., Hanzlikova, J., Sobotkova, M., Moravcik, P., 2021. Water and thermal regime of extensive green roof test beds planted with sedum cuttings and sedum carpets. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-020-02778-x10.1007/s11368-020-02778-xSearch in Google Scholar

Soil Survey Manual, 2017. USDA Handbook 18. Government Printing Office, Washington, D.C.Search in Google Scholar

Šimůnek, J., van Genuchten, M.Th., Šejna, M., 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal, 7, 587–600. https://doi.org/10.2136/vzj2007.007710.2136/vzj2007.0077Search in Google Scholar

Tahvonen, O., 2018. Adapting bioretention construction details to local practices in Finland. Sustainability, 10, 17. https://doi.org/10.3390/su1002027610.3390/su10020276Search in Google Scholar

Topp, G.C., Davis, J.L., Annan, P., 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16, 574–582. https://doi.org/10.1029/WR016i003p0057410.1029/WR016i003p00574Search in Google Scholar

Uber, M., Vandervaere, J., Zin, I., Braud, I., Heistermann, M., Legoût, C., Molinié, G., Nord, G., 2018. How does initial soil moisture influence the hydrological response? A case study from southern France. Hydrology and Earth System Sciences Discussions, 1–43. https://doi.org/10.5194/hess-2018-2810.5194/hess-2018-28Search in Google Scholar

van Genuchten, M.Th., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of America Journal, 44, 5. https://doi.org/10.2136/sssaj1980.03615995004400050002x10.2136/sssaj1980.03615995004400050002xSearch in Google Scholar

van Genuchten, M., Leij, F., Yates, S., Williams, J., 1991. The RETC Code for quantifying hydraulic functions of unsatu-rated soils. EPA/600/2-91/065, R.S. 83.Search in Google Scholar

Villarreal, E., Davies, A., Bengtsson, L., 2004. Inner city stormwater control using a combination of Best Management Practices. Ecological Engineering, 22, 279–298. https://doi.org/10.1016/j.ecoleng.2004.06.00710.1016/j.ecoleng.2004.06.007Search in Google Scholar

Vogel, T., Cislerova, M., Hopmans, J., 1991. Porous media with linearly variable hydraulic properties. Water Resources Research, 27, 2735–2740. https://doi.org/10.1029/91WR0167610.1029/91WR01676Search in Google Scholar

Willaredt, M., Nehls, T., 2021. Investigation of water retention functions of artificial soil-like substrates for a range of mixing ratios of two components. Journal of Soils and Sediments, 21, 2118–2129. https://doi.org/10.1007/s11368-020-02727-810.1007/s11368-020-02727-8Search in Google Scholar

Wong, T., Fletcher, T., Duncan, H., Jenkins, G., 2006. Modelling urban stormwater treatment – A unified aproach. Ecological Engineering, 27, 58–70. DOI: 10.1016/j.ecoleng.2005.10.01410.1016/j.ecoleng.2005.10.014Search in Google Scholar

Zhang, K., Chui, T.F.M., 2017. Evaluating hydrologic performance of bioretention cells in shallow groundwater. Hydro-logical Processes, 31, 4122–4135. https://doi.org/10.1002/hyp.1130810.1002/hyp.11308Search in Google Scholar

Zhu, Y., Irmak, S., Jhala, A.J., Vuran, M.C., Diotto, A., 2019. Time-domain and frequency-domain reflectometry type soil moisture sensor performance and soil temperature effects in fine- and coarse-textured soils. Applied Engineering in Agriculture, 35, 117–134. DOI: 10.13031/aea.1290810.13031/aea.12908Search in Google Scholar

eISSN:
1338-4333
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other