Accès libre

Effects of bed-material gradation on clear water scour at single and group of piles

À propos de cet article

Citez

Alemi, M., Pêgo, J.P., Maia, R., 2019. Numerical simulation of the turbulent flow around a complex bridge pier on the scoured bed. Eur. J. Mech. B Fluids., 76, 316–331.10.1016/j.euromechflu.2019.03.011Search in Google Scholar

Amini, A., Melville, B.W., Ali, T.M., Ghazali, A.H., 2012. Clear-water local scour around pile groups in shallow-water flow. J. Hydraul. Eng., 138, 2, 177–185.10.1061/(ASCE)HY.1943-7900.0000488Search in Google Scholar

Arneson, L.A., Zevenbergen, L.W., Lagasse, P.F., Clopper, P.E., 2012. Evaluating Scour at Bridges. Federal Highway Administration Hydraulic Engineering Circular No. 18. FHWA-HIF-12-003. FHWA, Washington, DC.Search in Google Scholar

Ataie-Ashtiani, B., Beheshti, A.A., 2006. Experimental investigation of clear-water local scour at pile groups. J. Hydraul. Eng., 132, 10, 1100–1104.10.1061/(ASCE)0733-9429(2006)132:10(1100)Search in Google Scholar

Ataie-Ashtiani, B., Aslani-Kordkandi, A., 2013. Flow field around single and tandem piers. Flow Turbul. Combust., 90, 3, 471–490.10.1007/s10494-012-9427-7Search in Google Scholar

Ataie-Ashtiani, B., Baratian-Ghorghi, Z., Beheshti, A.A., 2010. Experimental investigation of clear-water local scour of compound piers. J. Hydraul. Eng., 136, 6, 343–351.10.1061/(ASCE)0733-9429(2010)136:6(343)Search in Google Scholar

Ballio, F., Teruzzi, A., Radice, A., 2009. Constriction effects in clear-water scour at abutments. J. Hydraul. Eng., 135, 2, 140–145.10.1061/(ASCE)0733-9429(2009)135:2(140)Search in Google Scholar

Chiew, Y.M., Melville, B.W., 1989. Local scour at bridge piers with non-uniform sediments. Proc. Inst. Civ. Engrs., 87, 2, 215–224.10.1680/iicep.1989.2004Search in Google Scholar

Coleman, S.E., 2005. Clearwater local scour at complex piers. J. Hydraul. Eng., 131, 4, 330–334.10.1061/(ASCE)0733-9429(2005)131:4(330)Search in Google Scholar

Curran, J.C., Waters, K.A., 2014. The importance of bed sediment sand content for the structure of a static armor layer in a gravel bed river. J. Geophys. Res. Earth Surf., 119, 7, 1484–1497.10.1002/2014JF003143Search in Google Scholar

Diab, R.M.A.E.A., 2011. Experimental investigation on scouring around piers of different shape and alignment in gravel. Ph.D. thesis. Department of Civil and Environmental Sciences, Technical University Darmstadt, Germany.Search in Google Scholar

Ettema, R., Constantinescu, G., Melville, B.W., 2017. Flow-field complexity and design estimation of pier-scour depth: Sixty years since Laursen and Toch. J. Hydraul. Eng., 143, 9, 03117006. https://doi.org/10.1061/(ASCE)HY.1943-7900.000133010.1061/(ASCE)HY.1943-7900.0001330Search in Google Scholar

Ettema, R., Melville, B.W., Constantinescu, G., 2011. Evaluation of bridge scour research: Pier scour processes and predictions. Transportation Research Board of the National Academies, Washington, DC.Search in Google Scholar

Dey, S., Raikar, R.V., 2005. Scour in long contractions. J. Hydraul. Eng., 131, 12, 1036–1049.10.1061/(ASCE)0733-9429(2005)131:12(1036)Search in Google Scholar

Guney, M.S., Bombar, G., Aksoy, A.O., 2013. Experimental study of the coarse surface development effect on the bimodal bed-load transport under unsteady flow conditions. J. Hydraul. Eng., 139, 1, 12–21.10.1061/(ASCE)HY.1943-7900.0000640Search in Google Scholar

Guo, J., 2012. Pier scour in clear water for sediment mixtures. J. Hydraul. Res., 50, 1, 18–27.10.1080/00221686.2011.644418Search in Google Scholar

Lança, R., Fael, C., Cardoso, A., 2010. Assessing equilibrium clear water scour around single cylindrical piers. In: Dittrich, A., Koll, K., Aberle, J., Geisenhainer, P. (Eds.): Proc. River Flow. Bundesanstalt für Wasserbau, Karlsruhe, Germany, pp. 1207–1213.Search in Google Scholar

Lança, R., Fael, C., Maia, R., Pêgo, J.P., Cardoso, A.H., 2013a. Clear-water scour at comparatively large cylindrical piers. J. Hydraul. Eng., 139, 11, 1117–1125.10.1061/(ASCE)HY.1943-7900.0000788Search in Google Scholar

Lança, R., Fael, C., Maia, R., Pêgo, J.P., Cardoso, A.H., 2013b. Clear-water scour at pile groups. J. Hydraul. Eng., 139, 10, 1089–1098.10.1061/(ASCE)HY.1943-7900.0000770Search in Google Scholar

Laursen, E.M., 1963. An analysis of relief bridge scour. J. Hydraulics Div., 89, 3, 93–118.10.1061/JYCEAJ.0000896Search in Google Scholar

Lee, S.O., Sturm, T.W., 2009. Effect of sediment size scaling on physical modeling of bridge pier scour. J. Hydraul. Eng., 135, 10, 793–802.10.1061/(ASCE)HY.1943-7900.0000091Search in Google Scholar

Mao, L., Cooper, J.R., Frostick, L.E., 2011. Grain size and topographical differences between static and mobile armour layers. Earth Surf. Process. Landf., 36, 10, 1321–1334.10.1002/esp.2156Search in Google Scholar

Melville, B.W., Chiew, Y.M., 1999. Time scale for local scour at bridge piers. J. Hydraul. Eng., 125, 1, 59–65.10.1061/(ASCE)0733-9429(1999)125:1(59)Search in Google Scholar

Melville, B.W., Coleman S.E., 2000. Bridge Scour. Water Resources Publications, Highlands ranch, Colorado, USA.Search in Google Scholar

Melville, B.W., Sutherland, A.J., 1988. Design method for local scour at bridge piers. J. Hydraul. Eng., 114, 10, 1210–1226.10.1061/(ASCE)0733-9429(1988)114:10(1210)Search in Google Scholar

Mia, M.F., Nago, H., 2003. Design method of time-dependent local scour at circular bridge pier. J. Hydraul. Eng., 129, 6, 420–427.10.1061/(ASCE)0733-9429(2003)129:6(420)Search in Google Scholar

Mir, B.H., Lone, M.A., Bhat, J.A., Rather, N.A., 2018. Effect of gradation of bed material on local scour depth. Geotech. Geol. Eng., 36, 4, 2505–2516.10.1007/s10706-018-0479-xSearch in Google Scholar

Molinas, A., 2001. Effects of gradation and cohesion on bridge scour: Synthesis report. Report No. FHWA-RD-99-189. Federal Highway Administration, Washington, DC.Search in Google Scholar

Moreno, M., Maia, R., Couto, L., 2016. Prediction of equilibrium local scour depth at complex bridge piers. J. Hydraul. Eng., 142, 11, 04016045.10.1061/(ASCE)HY.1943-7900.0001153Search in Google Scholar

Namaee, M.R., Sui, J., 2019. Impact of armour layer on the depth of scour hole around side-by-side bridge piers under ice-covered flow condition. J. Hydrol. Hydromech., 67, 3, 240–251.10.2478/johh-2019-0010Search in Google Scholar

Okhravi, S., Gohari, S., Maia, R., 2019. Scour development under different flow rates for sediment mixtures. In: Proc. 3rd Doctoral Congress in Engineering, Symposium of Civil Engineering and Spatial Planning, FEUP, 27–28 June, Porto, Portugal.Search in Google Scholar

Oliveto, G., Hager, W.H., 2002. Temporal evolution of clearwater pier and abutment scour. J. Hydraul. Eng., 128, 9, 811–820.10.1061/(ASCE)0733-9429(2002)128:9(811)Search in Google Scholar

Orrú, C., Blom, A., Uijttewaal, W.S.J., 2016. Armor breakup and reformation in a degradational laboratory experiment. Earth Surf. Dyn., 4, 2, 461–470.10.5194/esurf-4-461-2016Search in Google Scholar

Richardson, E.V., Davis, S.R., 2001. Evaluating scour at bridges. Hydraulic Engineering Circular No. 18 (HEC-18). Rep. No. FHWA NHI 01-001. Federal Highway Administration, Washington. DC.Search in Google Scholar

Raudkivi, A.J., Ettema, R., 1977. Effect of sediment gradation on clear water scour. J. Hydraulics Div., 103, 10, 1209–1213.10.1061/JYCEAJ.0004853Search in Google Scholar

Sheppard, D.M., Odeh, M., Glasser, T., 2004. Large scale clearwater local pier scour experiments. J. Hydraul. Eng., 130, 10, 957–963.10.1061/(ASCE)0733-9429(2004)130:10(957)Search in Google Scholar

Sheppard, D.M., Renna, R., 2010. Bridge Scour Manual. Florida Department of Transportation, Tallahassee, FL.Search in Google Scholar

Sui, J., Afzalimehr, H., Samani, A.K., Maherani, M., 2010. Clear-water scour around semi-elliptical abutments with armored beds. Int. J. Sediment. Res., 25, 3, 233–245.10.1016/S1001-6279(10)60041-8Search in Google Scholar

Sumer, B.M., Fredsøe, J., 2002. The Mechanics of Scour in the Marine Environment. World Scientific, Singapore, 539 p.10.1142/4942Search in Google Scholar

Unger, J., Hager, W.H., 2006. Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp. Fluids, 42, 1, 1–19.10.1007/s00348-006-0209-7Search in Google Scholar

Wilcock, P.R., DeTemple, B.T., 2005. Persistence of armor layers in gravel-bed streams. Geophys. Res. Lett., 32, 8, L08402. https://doi.org/10.1029/2004GL02177210.1029/2004GL021772Search in Google Scholar

Yalin, M.S., 1971. Theory of Hydraulic Models. MacMillan Civil Engineering Hydraulics, Macmillan.10.1007/978-1-349-00245-0Search in Google Scholar

Yang, Y., Melville, B.W., Macky, G.H., Shamseldin, A.Y., 2020. Experimental study on local scour at complex bridge pier under combined waves and current. Coast. Eng., 160, 103730. https://doi.org/10.1016/j.coastaleng.2020.10373010.1016/j.coastaleng.2020.103730Search in Google Scholar

Yanmaz, A.M., Altinbilek, H.D., 1991. Study of time-dependent local scour around bridge piers. J. Hydraul. Eng., 117, 10, 1247–1268.10.1061/(ASCE)0733-9429(1991)117:10(1247)Search in Google Scholar

Zhou, K., Duan, J.G., Bombardelli, F.A., 2020. Experimental and theoretical study of local scour around three-pier group. J. Hydraul. Eng., 146, 10, 04020069. https://doi.org/10.1061/(ASCE)HY.1943-7900.000179410.1061/(ASCE)HY.1943-7900.0001794Search in Google Scholar

eISSN:
1338-4333
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other