Accès libre

Evolution of local scour downstream of Type A PK weir in non-cohesive sediments

À propos de cet article

Citez

Aderibigbe, O., Rajaratnam, N., 1998. Effect of sediment gradation on erosion by plane turbulent wall jets. J. Hydraul. Eng., 124, 10, 1034–1042. DOI: 10.1061/(ASCE)0733-9429(1998)124:10(1034)10.1061/(ASCE)0733-9429(1998)124:10(1034)Search in Google Scholar

Adduce, C., Sciortino, G., 2006. Scour due to a horizontal turbulent jet: Numerical and experimental investigation. J. Hydraul. Res., 44, 5, 663–673. DOI: https://doi.org/10.1080/00221686.2006.952171510.1080/00221686.2006.9521715Search in Google Scholar

Annandale, G.W., 1995. Erodibility. J. Hydraul. Res., 33, 4, 471–494. DOI: 10.1080/0022168950949865610.1080/00221689509498656Search in Google Scholar

Ben Meftah, M., Mossa, M., 2020. New approach to predicting local scour downstream of grade-control structure. J. Hydraul. Eng., 146, 2. DOI: 10.1061/(ASCE)HY.1943-7900.000164910.1061/(ASCE)HY.1943-7900.0001649Search in Google Scholar

Bombardelli, F.A., Palermo, M., Pagliara, S., 2018. Temporal evolution of jet induced scour depth in cohesionless granular beds and the phenomenological theory of turbulence. Physics of Fluids, 30, 8, 085109. DOI: 10.1063/1.504180010.1063/1.5041800Search in Google Scholar

Bormann, N.E., Julien, P.Y., 1991. Scour downstream of grade control structures. J. Hydraul. Eng., 117, 5, 579–594. DOI: 10.1061/(ASCE)0733-9429(1991)117:5(579)10.1061/(ASCE)0733-9429(1991)117:5(579)Search in Google Scholar

Bung, D.B., Crookston, B.M., Valero, D., 2021. Turbulent free-surface monitoring with an RGB-D sensor: the hydraulic jump case. J. Hydraul. Res., 59, 779–790. DOI: 10.1080/00221686.2020.184481010.1080/00221686.2020.1844810Search in Google Scholar

Center for Disaster Philanthropy, 2019. 2019 Catastrophic River Flooding. Center for Disaster Philanthropy. Accessed Jan. 25, 2020. https://disasterphilanthropy.org/disaster/2019-u-s-spring-floods/Search in Google Scholar

Chen, J., Hsu, H., Hong, Y., 2016. The influence of upstream slope on the local scour at drop structure. J. Mt. Sci., 13, 12, 2237–2248. DOI:10.1007/s11629-015-3790-510.1007/s11629-015-3790-5Search in Google Scholar

Crookston, B.M., Erpicum, S., Tullis, B.P., Laugier, F., 2019. Hydraulics of labyrinth and piano key weirs: 100 years of prototype structures, advancements, and future research needs. J. Hydraul. Res., 145, 12, 02519004. DOI: 10.1061/(ASCE)HY.1943-7900.000164610.1061/(ASCE)HY.1943-7900.0001646Search in Google Scholar

Dey, S., Sarkar, A., 2006. Scour downstream of an apron due to submerged horizontal jets. J. Hydraul. Eng., 132, 3, 246–257. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2006)132:3(246)10.1061/(ASCE)0733-9429(2006)132:3(246)Search in Google Scholar

Dey, S., Raikar, R.V., 2007. Scour below a High Vertical Drop. J. Hydraul. Eng., 133, 5, 564–568. DOI: 10.1061/(ASCE)0733-9429(2007)133:5(564)10.1061/(ASCE)0733-9429(2007)133:5(564)Search in Google Scholar

Elnikhely, E.A., Fathy, I., 2020. Prediction of scour downstream of triangular labyrinth weirs. Alex. Eng. J., 59, 2, 1037–1047. DOI: 10.1016/j.aej.2020.03.02510.1016/j.aej.2020.03.025Search in Google Scholar

Ervine, D.A., Falvey, H.T., Whiters, W., 1997. Pressure fluctuations on plunge pool floors. J. Hydraul. Res. 35, 257-279. DOI: https://doi.org/10.1080/0022168970949843010.1080/00221689709498430Search in Google Scholar

Eslinger, K., Crookston, B.M., 2020. Energy dissipation of Type A Piano Key Weirs. Water 2020, 12, 1253; DOI: 10.3390/w1205125310.3390/w12051253Search in Google Scholar

Ettema, R., Yoon, B., Nakato, T., Muste, M., 2004. A review of scour conditions and scour-estimation difficulties for bridge abutments. Water Eng., 8, 6, 643–650. DOI: 10.1007/BF0282355510.1007/BF02823555Search in Google Scholar

FloodList, 2020. Floods in USA. Accessed: Jan. 25, 2020. http://floodlist.com/america/usaSearch in Google Scholar

Gebhardt, M., Herbst, J., Merkel, J., Belzner, F., 2019. Sedimentation at labyrinth weirs – an experimental study of the self-cleaning process. J. Hydraul. Res., 57, 4, 579–590. DOI: 10.1080/00221686.2018.149405310.1080/00221686.2018.1494053Search in Google Scholar

Green, C., 2010. Towards sustainable flood risk management. Int. J. Disaster Risk Sci., 1, 1, 33–43. DOI: 10.3974/jSearch in Google Scholar

Hoffmans, G.J.C.M., 1998. Jet scour in equilibrium phase. J. Hydr. Eng., 124, 4, 430–437. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1998)124:4(430)10.1061/(ASCE)0733-9429(1998)124:4(430)Search in Google Scholar

Hoffmans, G.J.C.M., Verheij, H.J., 1997. Scour Manual. Balkema, Rotterbam, The Netherlands, 205 p.Search in Google Scholar

Jia, Y., Kitamura, T., Wang, S.S.Y., 2001. Simulation of scour process in plunging pool of loose bed-material. J. Hydraul. Eng., 127, 3, 04016043, 219–229. DOI: 10.1061/(ASCE)0733-9429(2001)127:3(219)10.1061/(ASCE)0733-9429(2001)127:3(219)Search in Google Scholar

Jüstrich, S., Pfister, M., Schleiss, A.J., 2016. Mobile riverbed scour downstream of a piano key weir. J. Hydraul. Eng., 142, 11, 04016043. DOI: 10.1061/(ASCE)HY.1943-7900.000118910.1061/(ASCE)HY.1943-7900.0001189Search in Google Scholar

Kuhnle, R.A., Alonso, C.V., Shields, F.D., 2002. Local scour associated with angled spur dikes. J. Hydraul. Eng., 128, 12, 1087–1093. DOI: 10.1061/(ASCE)0733-9429(2002)128: 12(1087)10.1061/(ASCE)0733-9429(2002)128:12(1087)Search in Google Scholar

Lantz, W., 2021. A laboratory study on the geometric effects of piano key weirs on scour for non-cohesive substrates and simple mitigation techniques. PhD Thesis. Utah State University, Logan, Utah. DOI: https://doi.org/10.26076/b3d7-379dSearch in Google Scholar

Lantz, W., Crookston, B.M., Palermo, M., 2020. Flood infrastructure: Localized scour at Piano Key Weirs. In: Conference Proceedings Dam Safety 2020. Association of State Dam Safety Officials, Lexington, KY, pp. 691–703.Search in Google Scholar

López-Soto, J., Wibowo, J., Molina-Bas, O., 2016. Cost reduction in dam infrastructure using arced labyrinth spillways. In: Proc. Construction Research Congress 2016. San Juan, Puerto Rico, pp. 647–656. DOI: 10.1061/9780784479827.06610.1061/9780784479827.066Search in Google Scholar

Machiels, O., Pirotton, M., Pierre, A., Dewals, B., Erpicum, S., 2014. Experimental parametric study and design of Piano Key Weirs. J. Hydraul. Res., 52, 3, 326–335. DOI: 10.1080/00221686.2013.87507010.1080/00221686.2013.875070Search in Google Scholar

Marsooli, R., Lin, N., Emanuel, K., Feng, K., 2019. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun., 10, 1, 3785. DOI: 10.1038/s41467-019-11755-z10.1038/s41467-019-11755-zSearch in Google Scholar

Mason, P.J., Arumugam, K., 1985. Free jet scour below dams and flip buckets. J. Hydraul. Eng., 111, 2, 220–235. DOI: 10.1061/(ASCE)0733-9429(1985)111:2(220)10.1061/(ASCE)0733-9429(1985)111:2(220)Search in Google Scholar

Microsonic, 2021. mic+ 130/IU/TC. mic+ ultrasonic sensors. Accessed: Mar. 4, 2021. https://www.microsonic.de/en/distance-sensors/cylindrical/micplus/standard-sensors/standard-sensors/micplus130iutc.htmSearch in Google Scholar

Nasrollahi, A., Ghodsian, M., Neyshabour, S.A.A.S., 2008. Local scour at permeable spur dikes. J. Appl. Sci., 8, 19, 3398–3406. DOI: 10.3923/jas.2008.3398.340610.3923/jas.2008.3398.3406Search in Google Scholar

NWS, 2020. NWS Preliminary US Flood Fatality Statistics. National Weather Service (NWS), National Oceanic and Atmospheric Administration (NOAA). Accessed: Jan. 25, 2020. https://www.weather.gov/arx/usfloodSearch in Google Scholar

Noseda, M., Stojnic, I., Pfister, M., Schleiss, A.J., 2019. Upstream erosion and sediment passage at Piano Key Weirs. J. Hydraul. Eng., 145, 8, 04019029. DOI: 10.1061/(ASCE)HY.1943-7900.000161610.1061/(ASCE)HY.1943-7900.0001616Search in Google Scholar

Oliveto, G., Hager, W.H., 2002. Temporal evolution of clear water pier and abutment scour. J. Hydraul. Eng., 128, 9, 811–820. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2002)128:9(811)10.1061/(ASCE)0733-9429(2002)128:9(811)Search in Google Scholar

Pagliara, S., Amidei, M., Hager, W.H., 2008a. Hydraulics of 3D plunge pool scour. J. Hydraul. Eng., 134, 9, 1275–1284. DOI: 10.1061/(ASCE)0733-9429(2008)134:9(1275)10.1061/(ASCE)0733-9429(2008)134:9(1275)Search in Google Scholar

Pagliara, S., Hager, W.H., Unger, J., 2008b. Temporal evolution of plunge pool scour. J. Hydraul. Eng., 134, 11, 1630–1638. DOI: 10.1061/(ASCE)0733-9429(2008)134:11(1630)10.1061/(ASCE)0733-9429(2008)134:11(1630)Search in Google Scholar

Pagliara, S., Palermo, M., Carnacina, I., 2008c. Scour control and surface sediment distribution downstream of block ramps. J. Hydraul. Res., 46, 3, 334–343. DOI: 10.3826/jhr.2008.320810.3826/jhr.2008.3208Search in Google Scholar

Palermo, M., Bombardelli, F.A., Pagliara, S., 2018. From developing to developed phase in the scour evolution due to vertical and sub-vertical plunging jets: New experiments and theory. In: Proc. 7th International Symposium on Hydraulic Structures. Aachen, Germany. DOI: 10.15142/T3ZH2ZSearch in Google Scholar

Palermo, M., Crookston, B., Pagliara, S., 2020. Analysis of equilibrium morphologies downstream of a PK Weir Structure. In: Proc. World Environmental and Water Resources Congress 2020. American Society of Civil Engineers (ASCE), pp. 43–51. DOI: 10.1061/9780784482971.00510.1061/9780784482971.005Search in Google Scholar

Palermo, M., Pagliara, S. Roy, D., 2021. Effect of debris accumulation on scour evolution at bridge pier in bank proximity. J. Hydrol. Hydromech., 69, 3031, 1, 108–118. DOI: 10.2478/johh-2020-004110.2478/johh-2020-0041Search in Google Scholar

Pfister, M., Jüstrich, S., Schleiss, A., 2017. Toe-scour formation at Piano Key Weirs. Labyrinth and Piano Key Weirs III – PKW 2017. Taylor and Francis Group, London, UK, pp. 147–156.10.1201/9781315169064-21Search in Google Scholar

Schoklitsch, A., 1932. Kolkbildung unter Uberfallstrahlen. Wasserwirtschaft, 343.Search in Google Scholar

Stein, O.R., Julien, P.J., Alonso, C.V., 1993. Mechanics of jet scour downstream of a headcut. J. Hydraul. Res., 31, 6, 723–738. DOI: 10.1080/00221689309498814.10.1080/00221689309498814Search in Google Scholar

Wang, L., Melville, B.W., Whittaker, C.N., Guan, D., 2019. Scour estimation downstream of submerged weirs. J. Hydraul. Eng., 145, 12, 06019016. DOI: 10.1061/(ASCE)HY. 1943-7900.0001654.10.1061/(ASCE)HY.1943-7900.0001654Search in Google Scholar

Yazdi, A.M., Hoseini, S.A., Nazari, S., Amanian, N., 2021. Effects of weir geometry on scour development in the downstream of Piano Key Weirs. Water Supply, 21, 1, 289–298. DOI: 10.2166/ws.2020.272.10.2166/ws.2020.272Search in Google Scholar

Zhang, G., Valero, D., Bung, D.B., Chanson, H., 2018. On the estimation of free-surface turbulence using ultrasonic sensors. Flow Meas. Instrum., 60, 171–184. DOI: 10.1016/j.flowmeasinst.2018.02.00910.1016/j.flowmeasinst.2018.02.009Search in Google Scholar

eISSN:
1338-4333
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other