Accès libre

Temporal and spatial patterns of the river flow and water temperature relations in Poland

À propos de cet article

Citez

Adynkiewicz-Piragas, M., 2008. Compensation actions for negative impact of hydrotechnical structures on the river ecosystem. Infrastruktura i ekologia terenów wiejskich, 9, 7–18. (In Polish.)Search in Google Scholar

Allan, J.D., Castillo, M.M., 2007. Stream Ecology: Structure and Function of Running Waters. 2nd ed. Chapman and Hall, New York, 436 p.Search in Google Scholar

Augustyn, L., 2010. The influence of the Czorsztyn-Niedzica and Sromowce Wyżne hydroelectric power station on the ichthyofauna of the Dunajec River in the Pieniny region. Pieniny – Zapora – Zmiany - Monografie Pienińskie, 2, 227–239. (In Polish.)Search in Google Scholar

Bartholow, J.M., 1989. Stream temperature investigations: field and analytic methods. U.S. Fish and Wildlife Service, In-stream Flow Information, paper no. 13, Biological Report 89 (17). U.S. Department of the Interior Fish and Wildlife Service Research and Development, Washington, 139 p.Search in Google Scholar

Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, J.P., 2008. Climate Change and Water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat. Intergovernmental Panel on Climate Change, Geneva, 210 p.Search in Google Scholar

Berhanu, B., Seleshi, Y., Demisse, S., Melesse, A., 2015. Flow regime classification and hydrological characterization: A case study of Ethiopian rivers. Water, 7, 3149–3165.10.3390/w7063149Search in Google Scholar

Bogan, T., Mohseni, O., Stefan, H.G., 2003. Stream temperature–equilibrium temperature relationship. Water Resour. Res., 39, 1245–1256.10.1029/2003WR002034Search in Google Scholar

Caissie, D., 2006. The thermal regime of rivers: a review. Freshwater Biology, 51, 8, 1389–1406.10.1111/j.1365-2427.2006.01597.xSearch in Google Scholar

Caissie, D., St-Hilaire, A., El-Jabi, N., 2004. Prediction of water temperatures using regression and stochastic models. In: 57th Canadian Water Resources Association Annual Congress, Montreal, QC, June 16–18, 2004. Canadian Water Resources Association, Ottawa, Ontario, 6 p.Search in Google Scholar

Caldwell, P., Segura, C., Laird, S.G., Sun, G., McNulty, S.G., Sandercock, M., Boggs, J., Vose, J.M., 2015. Short-term stream water temperature observations permit rapid assessment of potential climate change impacts. Hydrol. Process., 29, 2196–2211.10.1002/hyp.10358Search in Google Scholar

Choiński, A., Ptak, M., Volchak, A., Kirvel, I., Valiuškevičius, G., Parfomuk, S. Kirvel, P. Sidak, S., 2021. Effect of air temperature increase on changes in thermal regime of the Oder and Neman rivers flowing into the Baltic Sea. Atmosphere, 12, 4, 498.10.3390/atmos12040498Search in Google Scholar

Ciupa, T., 2006. Temperature of waters and icing phenomena in the rivers. Draining river catchments of Silnica and Sufraganiec (the Swiętokrzyskie Mountains). Probl. Ekol. Krajobr., 16, 381–390. (In Polish.)Search in Google Scholar

Dick, J.J., Tetzlaff, D., Soulsby, C., 2015. Landscape influence on smallscale water temperature variations in a moorland catchment. Hydrol. Process., 29, 3098–3111.10.1002/hyp.10423Search in Google Scholar

Dynowska, I., 1994. River runoff regime. In: Najgrakowski, M. (Ed.): Atlas of the Republic of Poland. IG PZ PAN, Warsaw, Poland, Sheet: 32.3. (In Polish.)Search in Google Scholar

Eby, L., Helmy, O., Holsinger, L.M., Young, M.K., 2014. Evidence of climate-induced range contractions in bull trout Salvelinus confluentus in a Rocky Mountain watershed, USA. PLoS ONE, 9, e98812.10.1371/journal.pone.0098812404580024897341Search in Google Scholar

Elliott, J., Elliott, J.A., 2010. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J. Fish Biol., 77, 8, 1793–1817.10.1111/j.1095-8649.2010.02762.x21078091Search in Google Scholar

Ficklin, D.L., Stewart, I.T., Maurer, E.P., 2013. Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resources Research, 49, 2765–2782.10.1002/wrcr.20248Search in Google Scholar

Fullerton, A.H., Torgersen, C.E., Lawler, J.J. et al., 2018. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: effects of scale and climate change. Aquat. Sci., 80, 3, 1–15.10.1007/s00027-017-0557-9585495229556118Search in Google Scholar

Gallice, A., Schaefli, B., Lehning, M., Parlange, M.P., Huwald, H., 2015. Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physically-based analytical model. Hydrol. Earth Syst. Sci. Discuss., 12, 4081–155.10.5194/hessd-12-4081-2015Search in Google Scholar

Goulden, M., Conway, D., Persechino, A., 2009. Adaptation to climate change in international river basins in Africa. Hydrol. Sci. J., 54, 805–828.10.1623/hysj.54.5.805Search in Google Scholar

Grabowski, Z.J., Watson, E., Chang, H., 2016. Using spatially explicit indicators to investigate watershed characteristics and stream temperature relationships. Sci Total Environ., 551–552, 1, 376–386.10.1016/j.scitotenv.2016.02.04226881729Search in Google Scholar

Graf, R., 2015. Variations of the thermal conditions of the Warta in the profile connecting the Urstromtal and gorge sections of the valley (Nowa Wieś Podgórna – Śrem – Poznań). In: Absalon, D., Matysik, M., Ruman, M. (Eds.): Nowoczesne metody i rozwiązania w hydrologii i gospodarce wodnej. Komisja Hydrologiczna PTG, Oddział Katowice, pp. 177–194. (In Polish.)Search in Google Scholar

Graf, R., 2018. Distribution properties of a measurement series of river water temperature at different time resolution levels (Based on the example of the Lowland River Noteć, Poland). Water, 10, 2, 203.10.3390/w10020203Search in Google Scholar

Graf, R., 2019. A multifaceted analysis of the relationship between daily temperature of river water and air. Acta Geophys., 67, 905–920.10.1007/s11600-019-00285-3Search in Google Scholar

Graf, R., Wrzesiński, D., 2019. Relationship between water temperature of Polish rivers and large-scale atmospheric circulation. Water, 11, 8, 1690.Search in Google Scholar

Graf, R., Wrzesiński, D., 2020. Detecting patterns of changes in river water temperature in Poland. Water, 12, 5, 1327.Search in Google Scholar

Graf, R., Wrzesiński, D., 2020a. Thermal regime. In: Waters of Wielkopolska. Surface Waters. Rivers; Choiński, A., Ed.; SERIA GEOGRAFIA NR 103; AMU Scientific Publisher: Poznań, Poland, pp. 159–186 (In Polish.)Search in Google Scholar

Graf, R., Łukaszewicz, J.T., Jawgiel, K., 2018. The analysis of the structure and duration of ice phenomena on the Warta river in relation to thermic conditions in the years 1991–2010. Water-Environment-Rural Areas, 18, 4, 64, 5–28 (In Polish.)Search in Google Scholar

Graf, R., Zhu, S., Sivakumar, B., 2019. Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach. Journal of Hydrology, 578, 124115.10.1016/j.jhydrol.2019.124115Search in Google Scholar

Habel, M.J., 2010. Range of influence of the Włocławek dam on fluctuations of water level of the lower Vistula River. Monografie Komitetu Inżynierii Środowiska PAN, 1, 69, 251–261. (In Polish.)Search in Google Scholar

Hannah, D.M., Garner, G., 2015. River water temperature in the United Kingdom: changes over the 20th century and possible changes over the 21st century. Prog. Phys. Geogr., 39, 68–92.10.1177/0309133314550669Search in Google Scholar

Hannah, D.M., Malcolm, I.A., Soulsby, C., Youngson, A.F., 2004. Heat exchanges and temperatures within a salmon spawning stream in the Cairngorms, Scotland: Seasonal and subseasonal dynamics. River Res. Appl., 20, 635–652.10.1002/rra.771Search in Google Scholar

Hester, E.T., Doyle, M.W., 2011. Human impacts to river temperature and their effects on biological processes: a quantitative synthesis. Journal of the American Water Resources Association, 47, 571–587.10.1111/j.1752-1688.2011.00525.xSearch in Google Scholar

Hilderbrand, R.H., Kashiwagi, M.T., Prochaska, A.P., 2014. Regional and local scale modeling of stream temperatures and spatio-temporal variation in thermal sensitivities. Environ. Manag., 54, 14–22.10.1007/s00267-014-0272-424740817Search in Google Scholar

Hrachowitz, M., Soulsby, C., Imholt, C., 2010. Thermal regimes in a large upland salmon river: a simple model to identify the influence of landscape controls and climate change on maximum temperatures. Hydrol. Process., 24, 3374–3391.10.1002/hyp.7756Search in Google Scholar

Huntington, T.G., 2010. Climate warming-induced intensification of the hydrologic cycle: A review of the published record and assessment of the potential impacts on agriculture. Adv. Agron., 109, 1–53.10.1016/B978-0-12-385040-9.00001-3Search in Google Scholar

Imholt, C., Soulsby, C., Malcolm, I.A., Gibbins, C.N., 2013. Influence of contrasting riparian forest cover on stream temperature dynamics in salmonid spawning and nursery streams. Ecohydrology, 6, 380–392.10.1002/eco.1291Search in Google Scholar

IPCC, SRCCL. Climate Change and Land., 2018. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems. Summary for Policymakers. Available online:https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf (accessed on 10.01.2021).Search in Google Scholar

Isaak, D.J., Wollrab, S., Horan, D., Chandler, G., 2012. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Climatic Change, 113, 499–524.10.1007/s10584-011-0326-zSearch in Google Scholar

Isik, S., Singh, V.P., 2008. Hydrologic regionalization of watersheds in Turkey. J. Hydrol. Eng., 13, 824–834.10.1061/(ASCE)1084-0699(2008)13:9(824)Search in Google Scholar

Jackson, M.C., Loewen, C.J.G., Vinebrooke, R.D., Chimimba, C.T., 2016. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Chang. Biol., 22, 180–189.10.1111/gcb.1302826149723Search in Google Scholar

Jarosiewicz, A., Obolewski, K., 2013. Influence of small hydropower plants on the fluctuation of surface and ground water level, discharge and temperature – a case study of the Słupia River. Scientific Review – Engineering and Environmental Sciences, 62, 363–373 (In Polish.)Search in Google Scholar

Jokiel, P., Tomalski, P., 2018. Diferentiation of river flow seasonality and its multiannual changeability in selected cross-sections on the Vistula River. Prace Geogr., 155, 27–45.Search in Google Scholar

Jurgelėnaitė, A., Jakimavičius D., 2014. Prediction of river water temperature and its dependence on hydro-meteorological factors. Environmental Research, Engineering and Management, 2, 68, 15–24.10.5755/j01.erem.68.2.6178Search in Google Scholar

Kanno, Y., Vokoun, J.C., Letcher, B.H., 2014. Paired stream-air temperature measurements reveal fine-scale thermal heterogeneity within headwater brook trout stream networks. River Res. Appl., 30, 745–755.10.1002/rra.2677Search in Google Scholar

Kaushal, S.S., Likens, G.E., Jaworski, N.A., Pace, M.L., Sides, A.M., Seekell, D., Belt, K.T., Secor, D.H., Wingate R.L., 2010. Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment, 8, 461–466.10.1890/090037Search in Google Scholar

Kędra, M., 2020. Regional response to global warming: Water temperature trends in semi-natural mountain river systems. Water, 12, 283.10.3390/w12010283Search in Google Scholar

Koutsoyiannis, D., Montanari, A., 2007. Statistical analysis of hydroclimatic time series: Uncertainty and insights. Water Resour. Res., 43, 245–252.10.1029/2006WR005592Search in Google Scholar

Krasovskaia, I., Gottschalk, L., 2002. River flow regimes in a changing climate. Hydrol. Sci. J., 47, 597–609.10.1080/02626660209492962Search in Google Scholar

Kreft, A., 2013. Ice problems in the Odra section of the Oder. Gospodarka Wodna, 6, 1–4. (In Polish.)Search in Google Scholar

Lammers, R.B., Pundsack, J.W., Shiklomanov, A.I., 2007. Variability in river temperature, discharge, and energy flux from the Russian pan-Arctic landmass. J. Geophys. Res., 112, G04S59.10.1029/2006JG000370Search in Google Scholar

Langan, S.J., Johnston, L., Donaghy, M.J., Youngson, A.F., Hay, D.W., Soulsby, C., 2001. Variation in river water temperatures in an upland stream over a 30-year period. Science of the Total Environment, 265, 195–207.10.1016/S0048-9697(00)00659-8Search in Google Scholar

Letcher, B.H., Hocking, D.J., O’Neil, K., Whiteley, A.R., Nislow, K.H., O’Donnel, M.J., 2016. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags. Peer J., 4, e1727.10.7717/peerj.1727478273426966662Search in Google Scholar

Lisi, P.J., Schindler, D.E., Cline, T.J., Scheuerell, M.D., Walsh, P.B., 2015. Watershed geomorphology and snow melt control stream thermal sensitivity to air temperature. Geophysical Research Letters, 42, 3380–3388.10.1002/2015GL064083Search in Google Scholar

Liu, B., Yang, D., Ye, B., Berezovskaya, S., 2005. Long-term open water season stream temperature variations and changes over Lena river basin in Siberia. Glob. Planet Change, 48, 1–3, 96–111.10.1016/j.gloplacha.2004.12.007Search in Google Scholar

Luo, Y., Ficklin, D.L., Liu, X., Zhang, M., 2013. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Sci. Total Environ., 450–451, 72–82.10.1016/j.scitotenv.2013.02.00423467178Search in Google Scholar

Łaszewski, M., 2014. Methods of estimating stream water temperature and air temperature relationships - the Świder River case study. Prace Geogr., 136, 45–60. (In Polish.)Search in Google Scholar

Łaszewski, M., 2015. The influence of small reservoirs on lowland stream water temperature on the example of Jeziorka and Rządza rivers. Scientific Review – Engineering and Environmental Sciences, 67, 13–25. (In Polish.)Search in Google Scholar

Łaszewski, M., 2020. The effect of environmental drivers on summer spatial variability of water temperature in Polish lowland watercourses. Environ. Earth Sci., 79, 244.10.1007/s12665-020-08981-wSearch in Google Scholar

Łukaszewicz, J.T., Graf, R., 2020. The variability of ice phenomena on the rivers of the Baltic coastal zone in the Northern Poland. Journal of Hydrology and Hydromechanics, 68, 1, 38–50.10.2478/johh-2019-0025Search in Google Scholar

Magnuson, J.J., Robertson, D.M., Benson, B.J., Wynne, R.H., Livingstone, D.M., Arai, T., Assel, R.A., Barry, R.G., Card, V., Kuusisto, E., Granin, N.G., Prowse, T.D., Stewart, K.M., Vuglinski, V.S., 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289, 5485, 1743–1746.10.1126/science.289.5485.1743Search in Google Scholar

Marszelewski, W., Pius, B., 2016. Long-term changes in temperature of river waters in the transitional zone of the temperate climate: a case study of Polish rivers. Hydrological Sciences Journal, 61, 8, 1430–1442.10.1080/02626667.2015.1040800Search in Google Scholar

Marszelewski, W., Pius, B., 2018. Relation between air temperature and inland surface water temperature during climate change (1961–2014): case study of the Polish Lowland. In: Zelenakova, M. (Ed.): Water management and the environment: case studies. Springer, Berlin, pp. 175–195.10.1007/978-3-319-79014-5_8Search in Google Scholar

Matysik, M., 2018. The Impact of Mine Water Discharges on the Runoff of the Rivers of the Upper Silesian Coal Basin. Wydawnictwo Uniwersytetu Sląskiego: Katowice, Poland, 166 p. (In Polish.)Search in Google Scholar

Michel, A., Brauchli, T., Lehning, M., Schaefli, B., Huwald, H., 2020. Stream temperature and discharge evolution in Switzerland over the last 50 years: annual and seasonal behaviour. Hydrol. Earth Syst. Sci., 24, 115–142.10.5194/hess-24-115-2020Search in Google Scholar

Milligan, G.W., Cooper, M.C., 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrica, 50, 159–179.10.1007/BF02294245Search in Google Scholar

Mohseni, O., Stefan, H.G., 1999. Stream temperature/air temperature relationship: a physical interpretation. Journal of Hydrology, 218, 128–141.10.1016/S0022-1694(99)00034-7Search in Google Scholar

Mojena, R., 1977. Hierarchical grouping methods and stopping rules: An evaluation. Comput. J., 20, 359–363.10.1093/comjnl/20.4.359Search in Google Scholar

Nghiem, S.V., Hall, D.K., Rigor, I.G., 2014. Effects of Mackenzie River discharge and bathymetry on sea ice in the Beaufort Sea. Geophys. Res. Lett., 41, 873–879.10.1002/2013GL058956Search in Google Scholar

Olden, J.D., Naiman, R.J., 2010. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology, 55, 86–107.10.1111/j.1365-2427.2009.02179.xSearch in Google Scholar

Olsson, T., Jakkila, J., Veijalainen, N., Backman, L., Kaurola, J., Vehviläinen, B., 2015. Impacts of climate change on temperature, precipitation and hydrology in Finland–studies using bias corrected regional climate model data. Hydrol. Earth. Syst. Sci., 19, 3217–3238.10.5194/hess-19-3217-2015Search in Google Scholar

Ozaki, N., Fukushima., T., Harasawa, H., Kojiri, T., Kawashima, K., Ono, M., 2003. Statistical analyses on the effects of air temperature fluctuations on river water qualities. Hydrol. Process., 17, 2837–2853.10.1002/hyp.1437Search in Google Scholar

Padilla, A., Rasouli, K., Déry, S.J., 2015. Impacts of variability and trends in runoff and water temperature on salmon migration in the Fraser River Basin, Canada. Hydrol. Sci. J., 60, 523–533.10.1080/02626667.2014.892602Search in Google Scholar

Park, H., Watanabe, E., Kim, Y., Polyakov, I., Oshima, K., Zhang, X., Kimball, J.S., Yang, D., 2020. Increasing riverine heat influx triggers Arctic sea ice decline and oceanic and atmospheric warming. Science Advances, 6, 45, eabc4699.10.1126/sciadv.abc4699Search in Google Scholar

Pekarova, P., Halmova, D., Miklanek, P., Onderka, M., Pekar, J., Skoda, P., 2008. Is the water temperature of the Danube River at Bratislava, Slovakia, rising? Journal of Hydrometeorology, 9, 5, 1115–1122.10.1175/2008JHM948.1Search in Google Scholar

PHP IMGW-PIB, 1986. Hydrological Atlas of Poland. Stachy, J. (Ed.). Institute of Meteorology and Water Management – National Research Institute. Geological Publishing House, Warsaw, 562 p.Search in Google Scholar

Pociask-Karteczka, J., 2011. River runoff response to climate changes in Poland (East-Central Europe). IAHS Publication, 344, 182–187.Search in Google Scholar

Poff, N.L., Olden, J.D., Pepin, D.M., Bledsoe, B.P., 2006. Placing global stream flow variability in geographic and geomorphic contexts. River Res. Appl., 22, 149–166.10.1002/rra.902Search in Google Scholar

Ptak, M., Choiński, A., Kirviel, J., 2016. Long-term water temperature fluctuations in coastal rivers (Southern Baltic) in Poland. Bulletin of Geography, 11, 35–42.10.1515/bgeo-2016-0013Search in Google Scholar

Rice, K.C., Jastram, J.D., 2015. Rising air and stream-water temperatures in Chesapeake Bay region, USA. Clim. Change, 128, 127–138.10.1007/s10584-014-1295-9Search in Google Scholar

Rousseeuw, P., Silhouettes, J., 1987. A graphical aid to the interpretation and validation of cluster analysis. Comput. Appl. Math., 20, 53–65.10.1016/0377-0427(87)90125-7Search in Google Scholar

Sinokrot, B.A., Gulliver, J.S., 2000. In-stream flow impact on river water temperatures. Journal of Hydraulic Research, 38, 339–349.10.1080/00221680009498315Search in Google Scholar

Sugar, C.A., James, G.M., 2003. Finding the number of clusters in a dataset: An information-theoretic approach. J. Am. Stat. Assoc., 98, 750–763.10.1198/016214503000000666Search in Google Scholar

Tague, C., Farrell, M., Grant, G., Lewis, S., Rey, S., 2007. Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon. Hydrol. Process., 21, 3288–3300.10.1002/hyp.6538Search in Google Scholar

Taniwaki, R.H., Piggott, J.J., Ferraz, S.F., Matthaei, C.D., 2017. Climate change and multiple stressors in small tropical streams. Hydrobiologia, 793, 41–53.10.1007/s10750-016-2907-3Search in Google Scholar

Toffolon, M., Piccolroaz, S., 2015. A hybrid model for river water temperature as a function of air temperature and discharge. Environmental Research Letters, 10, 114011.10.1088/1748-9326/10/11/114011Search in Google Scholar

Tomalski, P., Tomaszewski, E., Wrzesiński, D., Sobkowiak, L., 2021. Relationships of hydrological seasons in rivers and groundwaters in selected catchments in Poland. Water, 13, 3, 250.10.3390/w13030250Search in Google Scholar

Ul Islam, S., Hay, R.W., Déry, S.J., Booth, B.P., 2019. Modelling the impacts of climate change on riverine thermal regimes in western Canada’s largest Pacific watershed. Sci. Rep., 9, 11398.10.1038/s41598-019-47804-2Search in Google Scholar

Van Vliet, M.T., Franssen, W.H., Yearsley, J.R., Ludwig, F., Haddeland, I., Lettenmaier, D.P., Kabat, P., 2013. Global river discharge and water temperature under climate change. Global Environmental Change, 23, 450–464.10.1016/j.gloenvcha.2012.11.002Search in Google Scholar

Ward, J.H., 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc., 58, 236–244.10.1080/01621459.1963.10500845Search in Google Scholar

Webb, B.W., Walling, D.E., 1996. Long-term variability in the thermal impact of river impoundment and regulation. Applied Geography, 16, 211–223.10.1016/0143-6228(96)00007-0Search in Google Scholar

Webb, B.W., Clack, P.D., Walling, D.E., 2003. Water-air temperature relationships in a Devon river system and the role of flow. Hydrological Processes, 17, 3069–3084.10.1002/hyp.1280Search in Google Scholar

Webb, B.W., Nobilis, F., 2007. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrolog. Sci. J., 52, 74–85.10.1623/hysj.52.1.74Search in Google Scholar

Wenger, S.J., Isaak, D.J., Luce, C.H., Neville, H.M., Fausch, K.D., Dun-ham, J.B., Dauwalter, D.C., Young, M.K., Elsner, M.M., Rieman, B.E., Hamlet, A.F., Williams, J.E., 2011. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proc. Natl. Acad. Sci. USA, 108, 34, 14175–14180.10.1073/pnas.1103097108Search in Google Scholar

Westhoff, J.T., Paukert, C.P., 2014. Climate change simulations predict altered biotic response in a thermally heterogeneous stream system. PLoS ONE, 9, e111438.10.1371/journal.pone.0111438Search in Google Scholar

Wiejaczka, Ł., 2007. Relationship between water temperature in the river and air temperature on the Ropa River. Folia Geographica - Series Geographica Physica, 37–38, 95–105. (In Polish.)Search in Google Scholar

Wiejaczka, Ł., 2011. Influence of storage reservoir on the relations between the temperature of water in the river and the air temperature. Scientific Review Engineering and Environmental Sciences, 20, 3, 183–195. (In Polish.)Search in Google Scholar

Wojtuszewska, K., 2007. Surface and groundwater fluctuation in Solina - Myczkowce dam reservoirs region. Gospodarka Surowcami Mineralnymi, 23, 119–134. (In Polish.)Search in Google Scholar

Woś, A., 2010. The Climate of Poland in the Second Half of the 20th Century. Scientific Publishing House UAM, Poznan, 490 p. (In Polish).Search in Google Scholar

Wrzesiński, D., 2013. Entropy of river flows in Poland. Studia i Prace z Geografii i Geologii, 33. Bogucki Wydawnictwo Naukowe, Poznań, 204 p. (In Polish.)Search in Google Scholar

Wrzesiński, D., 2016. Use of entropy in the assessment of uncertainty of river runoff regime in Poland. Acta Geophysica, 64, 5, 1825–1839.10.1515/acgeo-2016-0073Search in Google Scholar

Wrzesiński, D., 2021. Flow regime patterns and their changes. In: Zeleňáková, M., Kubiak-Wójcicka, K., Negm, A.M. (Eds.): Management of Water Resources in Poland. Springer, pp. 163–180.10.1007/978-3-030-61965-7_9Search in Google Scholar

Wrzesiński, D., Ptak, M., Plewa, K., 2018. Effect of the North Atlantic Oscillation on water level fluctuations in lakes of northern Poland. Geographia Polonica, 91, 243–259.10.7163/GPol.0119Search in Google Scholar

Wrzesiński, D., Sobkowiak, L., 2018. Detection of changes in flow regime of rivers in Poland. J. Hydrol. Hydromech., 66, 1, 55–64.10.1515/johh-2017-0045Search in Google Scholar

Wrzesiński, D., Sobkowiak, L., 2020. Transformation of the flow regime of a large allochthonous river in Central Europe - an example of the Vistula river in Poland. Water, 12, 2, 507.10.3390/w12020507Search in Google Scholar

Yang, D., Peterson, A., 2017. Water temperature characteristics and relationship with air temperature, Northern Canadian rivers. Arctic, 70, 1, 47–58.10.14430/arctic4627Search in Google Scholar

Yang, D., Park, H., Peterson, A., Liu, B., 2021. Arctic river water temperatures and thermal regimes. In: Arctic Hydrology, Permafrost and Ecosystems, pp. 287–313.10.1007/978-3-030-50930-9_10Search in Google Scholar

Younus, M., Hondzo, M., Engel, B.A., 2000. Stream temperature dynamics in upland agricultural watersheds. J. Environ. Eng., 126, 518–526.10.1061/(ASCE)0733-9372(2000)126:6(518)Search in Google Scholar

Zhang, Y., Arthington, A.H., Bunn, S.E., Mackay, S., Xia, J., Kennard, M., 2012. Classification of flow regimes for environmental flow assessment in regulated rivers: The Huai River Basin, China. River Res. Applic., 28, 989–1005.10.1002/rra.1483Search in Google Scholar

Zhu, S., Nyarko, E.K., Hadzima-Nyarko, M., 2018. Modelling daily water temperature from air temperature for the Missouri River. Peer J., 6, e4894.10.7717/peerj.4894599433829892503Search in Google Scholar

Zolezzi, G., Siviglia, A., Toffolon, M., Maiolini, B., 2011. Thermopeaking in Alpine streams: event characterization and time scales. Ecohydrol., 4, 564–76.10.1002/eco.132Search in Google Scholar

Żelazny, M., Rajwa-Kuligiewicz, A., Bojarczuk, A., Pęksa, Ł., 2018. Water temperature fluctuation patterns in surface waters of the Tatra Mts., Poland. J. Hydrol., 564, 824–835.10.1016/j.jhydrol.2018.07.051Search in Google Scholar

eISSN:
1338-4333
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other