Accès libre

Spatio-temporal analysis of remotely sensed and hydrological model soil moisture in the small Jičinka River catchment in Czech Republic

À propos de cet article

Citez

Albergel, C., Calvet, J.C., Mahfouf, J.F., Rüdiger, C., Barbu, A.L., Lafont, S., Roujean, J.L., Walker, J.P., Crapeau, M., Wigneron, J.P., 2010. Monitoring of water and carbon fluxes using a land data assimilation system: A case study for southwestern France. Hydrology and Earth System Sciences, 14, 1109–1124. DOI: 10.5194/hess-14-1109-201010.5194/hess-14-1109-2010Search in Google Scholar

Alvarez-Garreton, C., Ryu, D., Western, A.W., Crow, W.T., Su, C.-H., Robertson, D.R., 2016. Dual assimilation of satellite soil moisture to improve streamflow prediction in data scarce catchments. Water Resour. Res., 52, 5357–5375. DOI: 10.1002/2015WR01842910.1002/2015WR018429Search in Google Scholar

Badou, D.F., Diekkruger, B., Montzka, C., 2018. Validation of satellite soil moisture in the absence of in situ soil moisture: the ecase of the Tropical Yankin Basin. South African Journal of Geomatics, 7, 3. http://dx.doi.org/10.4314/sajg.v7i3.310.4314/sajg.v7i3.3Search in Google Scholar

Beven, K., 2006. A manifesto for the equifinality thesis. Journal of Hydrology, 320, 18–30.10.1016/j.jhydrol.2005.07.007Search in Google Scholar

Brocca, L., Melone, F., Moramarco, T., Wagner, W., Naeimi, V., Bartalis, Z., Hasenauer, S., 2010. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrology and Earth System Sciences, 14, 1881–1893. DOI:10.5194/hess-14-1881-201010.5194/hess-14-1881-2010Search in Google Scholar

Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martinez-Fernandez, J., Llorens, P., et al., 2011. Soil moisture estimation through ascat and amsr-e sensors: An intercomparison and validation study across europe. Remote Sens. Environ., 115, 3390–3408.10.1016/j.rse.2011.08.003Search in Google Scholar

Chiew, F., McMahon, T., 1994. Application of the daily rainfall–runoff model MODHYDROLOG to 28 Australian catchments. Journal of Hydrology, 153, 383–416.10.1016/0022-1694(94)90200-3Search in Google Scholar

Corradini, C., 2014. Soil moisture in the development of hydro-logical processes and its determination at different spatial scales. J. Hydrol., 516, 1–5.10.1016/j.jhydrol.2014.02.051Search in Google Scholar

Crow, W.T., Berg, A.A., Cosh, M.H., Loew, A., Mohanty, B.P., Panciera, R., de Rosnay, P., Ryu, D., Walker, J.P., 2012. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys., 50, 2. https://doi.org/10.1029/2011RG00037210.1029/2011RG000372Search in Google Scholar

Dai, Y., Xin, Q.,Wei, N., Zhang, Y., Shangguan,W.,Zuan, H., Zhang, Z., Liu,S., Lu, X., 2019. A global high resolution data set of soil hydraulic and thermal properties for land surface modelling. Journal of Advances in Modelling Earth Systems, 11, 9, 2996–3023. https://doi.org/10.1029/2019MS00178410.1029/2019MS001784Search in Google Scholar

Danhelka, J., Kubat J., Šercl P., Čekal, R. (Eds.), 2014. Floods in the Czech Republic in June 2013. Czech Hydrometeoro-logical Institute, Prague, Czech Republic.Search in Google Scholar

Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D.P., Hirschi, M., Ikonen, J., De Jeu, R., Kidd, R., Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P., 2017. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203, 185–215. https://doi.org/10.1016/j.rse.2017.07.00110.1016/j.rse.2017.07.001Search in Google Scholar

Đukić, V., Radić, Z., 2014. GIS based estimation of sediment discharge and areas of soil erosion and deposition for the torrential Lukovska River Catchment in Serbia. Water Resources Management, 28, 13, 4567–4581. https://link.springer.com/article/10.1007/s11269-014-0751-710.1007/s11269-014-0751-7Search in Google Scholar

Đukić, V., Radić, Z., 2016. Sensitivity analysis of a physically based distributed model. Water Resources Management, 3, 1669–1684. https://link.springer.com/article/10.1007/s11269-016-1243-810.1007/s11269-016-1243-8Search in Google Scholar

Ewen, J., Parkin, G., O’Connell, P.E., 2000. SHETRAN: Distributed river basin flow and transport modelling system. ASCE J. Hydrologic Eng., 5, 250–258. Available at: https://research.ncl.ac.uk/shetran/SHETRAN_ASCE_paper.pdf10.1061/(ASCE)1084-0699(2000)5:3(250)Search in Google Scholar

Gruber, A., Dorigo, W.A., Crow, W., Wagner, W., 2017. Triple collocation-based merging of satellite soil moisture retrievals. IEEE Transactions on Geoscience and Remote Sensing, 55, 12, 1–13. https://doi.org/10.1109/TGRS.2017.273407010.1109/TGRS.2017.2734070Search in Google Scholar

Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., Dorigo, W., 2019. Evolution of the ESA CCI Soil Moisture Climate Data Records and their underlying merging methodology. Earth System Science Data, 11, 717–739. https://doi.org/10.5194/essd-11-717-201910.5194/essd-11-717-2019Search in Google Scholar

Gwak, Y., Kim, S., 2017. Factors affecting soil moisture spatial variability for a humid forest hillslope. Hydrol. Processes, 31, 431–445.10.1002/hyp.11039Search in Google Scholar

Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagoti´c, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., et al., 2017. Soilgrids 250 m: Global gridded soil information based on machine learning. PLoS ONE, 12, e0169748.10.1371/journal.pone.0169748Search in Google Scholar

Hupet, F., Vanclooster, M., 2002. Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. J. Hydrol., 261, 86–101.10.1016/S0022-1694(02)00016-1Search in Google Scholar

IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C.B., V. Barros, T.F., Stocker, D., Qin, D.J., Dokken, K.L., Ebi, M.D., Mastrandrea, K.J., Mach, G.-K., Plattner, S.K., Allen, M.T., Midgley, P.M. (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 p.Search in Google Scholar

Jackson, T.J., Cosh, M.H., Bindlish, R., Starks, P.J., Bosch, D.D., Seyfried, M., Goodrich, D.C., Moran, M.S., Du, J., 2010. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, 48, 12, 4256–4272. DOI: 10.1109/TGRS.2010.205103510.1109/TGRS.2010.2051035Search in Google Scholar

Koster, R.D., Mahanama, S.P.P., Livneh, B., Lettenmaier, D.P., Reichle, R.H., 2010. Skill in streamflow forecasts derived from large - scale estimates of soil moisture and snow. Nature Geosciences, 3, 613–616. DOI: 10.1038/ngeo94410.1038/ngeo944Search in Google Scholar

Koster, R.D., Brocca, L., Crow, W.T., Burgin, M.S., De Lannoy, G.J.M., 2016. Precipitation estimation using l-band and c-band soil moisture retrievals. Water Resour. Res., 52, 7213–7225.10.1002/2016WR019024Search in Google Scholar

Laiolo, P., Gabellani, S., Pulvirenti, L., Boni, G., Rudari, R., et. al., 2014. Validation of remote sensing soil moisture products with a distributed continuous hydrological model. In: IEEE Geoscience and Remote Sensing Symposium. Quebec City, pp. 3319–3322. DOI: 10.1109/IGARSS.2014.6947190.10.1109/IGARSS.2014.6947190Search in Google Scholar

Lievens, H., S.K., Tomer, A., Al Bitar, G., De Lannoy, M., Drusch, G., Dumedah, H.-J. H., Franssen, Y., Kerr, B., Martens, Pan, M., 2015. SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia. Remote Sens. Environ., 168, 146–162.10.1016/j.rse.2015.06.025Search in Google Scholar

López López, P., Sutanudjaja, E.H., Schellekens, J., Sterk, G., and Bierkens, M.F.P., 2017. Calibration of a large-scale hydrological model using satellite-based soil moisture and evapotranspiration products. Hydrol. Earth Syst. Sci., 21, 3125–3144. https://doi.org/10.5194/hess-21-3125-2017.10.5194/hess-21-3125-2017Search in Google Scholar

Manfreda, S., McCabe, M.F., Fiorentino, M., Rodriguez-Iturbe, I., Wood, E.F., 2007. Scaling characteristics of spatial patterns of soil moisture from distributed modelling. Adv. Water Resour., 30, 2145–2150.10.1016/j.advwatres.2006.07.009Search in Google Scholar

Molnar, D.K., Julien, P.Y., 2000. Grid-size effects on surface runoff modelling. Journal of Hydrologic Engineering, 5, 1.10.1061/(ASCE)1084-0699(2000)5:1(8)Search in Google Scholar

Montzka, C., Rötzer, K., Bogena, H.R., Sanchez, N., Vereecken, H., 2018. A new soil moisture downscaling approach for SMAP, SMOS, and ASCAT by predicting sub-grid variability. Remote Sens., 10, 427.10.3390/rs10030427Search in Google Scholar

Mualem, Y., 1976. A new model predicting the hydraulic conductivitynof unsaturated porous media. Water Resour. Res., 12, 513–522.10.1029/WR012i003p00513Search in Google Scholar

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models: Part I. A discussion of principles. Journal of Hydrology, 27, 3, 282–290.10.1016/0022-1694(70)90255-6Search in Google Scholar

Pavlik, F., Dumbrovský, M., 2014. Influence of landscape retention capacity upon flood processes in Jičínka River basin. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62, 1, 191–199. DOI: 10.11118/actaun20146201019110.11118/actaun201462010191Search in Google Scholar

Parajka, J., Naeimi, V., Blöschl, G., Wagner, W., Merz, R., Scipal, K., 2006. Assimilating scatterometer soil moisture data into conceptual hydrologic models at the regional scale. Hydrol. Earth Syst. Sci., 10, 353–368.10.5194/hess-10-353-2006Search in Google Scholar

Parajka, J., Naeimi, V., Blöschl, G., Komma, J., 2009. Matching ERS scatterometer based soil moisture patterns with simulations of a conceptual dual layer hydrologic model over Austria. Hydrol. Earth Syst. Sci., 13, 259–271, https://doi.org/10.5194/hess-13-259-200910.5194/hess-13-259-2009Search in Google Scholar

Peng, J., Loew, A., Zhang, S., Wang, J., Niesel, J., 2017. Spatial downscaling of satellite soil moisture data using a Vegetation Temperature Condition Index. IEEE Trans. Geosci. Remote Sens., 54, 1, 558–566.10.1109/TGRS.2015.2462074Search in Google Scholar

Pereira, A.R., Pruitt, W.O., 2004. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agricultural Water Management, 66, 3, 251–257.10.1016/j.agwat.2003.11.003Search in Google Scholar

Qu, W., Bogena, H.R., Huisman, J.A., Vanderborght, J., Schuh, M., Priesack, E., Vereecken, H., 2015. Predicting subgrid variability of soil water content from basic soil information. Geophys. Res. Lett., 42, 789–796.10.1002/2014GL062496Search in Google Scholar

Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. Physics, 1, 5, 318–333. DOI: 10.1063/1.174501010.1063/1.1745010Search in Google Scholar

Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., 2004. The global land data assimilation system. Bull. Am. Meteorol. Soc., 85, 381–394. https://doi.org/10.1175/BAMS-85-3-38110.1175/BAMS-85-3-381Search in Google Scholar

Rosenbaum, U., Bogena, H.R., Herbst, M., Huisman, J.A., Peterson, T.J., Weuthen, A., Western, A.W., Vereecken, H., 2012. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res., 48, 10. https://doi.org/10.1029/2011WR01151810.1029/2011WR011518Search in Google Scholar

Rötzer, K., Montzka, C., Bogena, H., Wagner, W., Kerr, Y.H., Kidd, R., Vereecken, H., 2014. Catchment scale validation of smos and ascat soil moisture products using hydrological modeling and temporal stability analysis. J. Hydrol., 519, 934–946.10.1016/j.jhydrol.2014.07.065Search in Google Scholar

Saint-Venant, A.J.C.B., 1871. Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l’introduction de marées dans leurs lits. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 73, 147–154, 237–240.Search in Google Scholar

Stoorvogel, J.J., Bakkenes, M., Temme, A.J.A.M., Batjes, N.H., ten Brink, B.J.E., 2017. S-world: A global soil map for environmental modelling. Land Degrad. Dev., 28, 22–33.10.1002/ldr.2656Search in Google Scholar

Shangguan, W., Dai, Y.J., Duan, Q.Y., Liu, B.Y., Yuan, H., 2014. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst., 6, 249–263.10.1002/2013MS000293Search in Google Scholar

Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Islam, T., 2013. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology, 498, 292–304.10.1016/j.jhydrol.2013.06.021Search in Google Scholar

Teuling, A.J., Troch, P.A., 2005. Improved understanding of soil moisture variability dynamics. Geophys. Res. Lett., 32.10.1029/2004GL021935Search in Google Scholar

Thiessen, A.H., 1911. Precipitation averages for large areas. Monthly Weather Review, 39, 7, 1082–1084. http://dx.doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;210.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2Search in Google Scholar

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892–898.10.2136/sssaj1980.03615995004400050002xSearch in Google Scholar

Vereecken, H., Huisman, J.A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., Vanderborght, J., 2014. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol., 516, 76–96.10.1016/j.jhydrol.2013.11.061Search in Google Scholar

Verhoest, N.E.C., et al., 2015. Copula-based downscaling of coarse-scale soil moisture observations with implicit bias correction, IEEE Trans.Geosci. Remote Sens., 53, 6, 3507–3521.10.1109/TGRS.2014.2378913Search in Google Scholar

Wanders, N., Bierkens, M.F.P., Jong, S.M., Roo, A., Karssenberg, D., 2013. The benefits of using remotely sensed soil moisture in parameter identification of large scale hydrological models. Water Resour. Res., 50, 6874–6891. DOI: 10.1002/2013WR01463910.1002/2013WR014639Search in Google Scholar

Wang, L., Qu, J.J., 2009. Satellite remote sensing applications for surface soil moisture monitoring: a review. Frontiers of Earth Science in China, 3, 2, 237–247.10.1007/s11707-009-0023-7Search in Google Scholar

Western, A.W., Grayson, R.B., Bloschl, G., Willgoose, G.R., McMahon, T.A., 1999. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res., 35, 797–810.10.1029/1998WR900065Search in Google Scholar

Xiong, L., Yang, H., Zeng, L., Xu, C.-Y., 2018. Evaluating Consistency between the Remotely Sensed Soil Moisture and the Hydrological Model-Simulated Soil Moisture in the Qujiang Catchment of China. Water, 10, 3, 291. https://doi.org/10.3390/w1003029110.3390/w10030291Search in Google Scholar

Ye, W., Bates, B.C., Viney, N.R., Silvapan, M., Jakeman, A.J., 1997. Performance of conceptual rainfall–runoff models in low-yielding ephemeral catchments. Water Resources Research, 33, 1, 153–166.10.1029/96WR02840Search in Google Scholar

eISSN:
0042-790X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other