À propos de cet article

Citez

Al-Qinna, M., Scott, H.D., Brye, K.R., Brahana, J.V., Sauer, T.J., Sharpley, A., 2014. Coarse fragments affect soil properties in a mantled-karst landscape of the Ozark Highlands. Soil Sci., 179, 42–50.10.1097/SS.0000000000000034Search in Google Scholar

Bachmair, S., Weiler, M., 2011. New dimensions of hillslope hydrology. In: Levia, D.F. (Ed.): Forest Hydrology and Biogeochemistry. Synthesis of Past Research and Future Directions. Ecological Studies, Vol. 2016. Springer, pp. 455–482.10.1007/978-94-007-1363-5_23Search in Google Scholar

Beven, K., Germann, P., 1982. Macropores and water flow in soils. Water Resour Res., 18, 5, 1311–1325.10.1029/WR018i005p01311Search in Google Scholar

Botter, G., Rinaldo, A., 2003. Scale effect on geomorphologic and kinematic dispersion. Water Resour. Res., 39, 1286.10.1029/2003WR002154Search in Google Scholar

Bouwer, H., Rice, R.C., 1984. Hydraulic properties of stony vadose zones. Ground Water, 22, 696–705.10.1111/j.1745-6584.1984.tb01438.xSearch in Google Scholar

Brunner, M.I, Viviroli, D., Furrer, R., Seibert, J., Favre, A.C., 2018. Identification of flood reactivity regions via the functional clustering of hydrographs. Water Resources Research, 54, 3, 1852–1867.10.1002/2017WR021650Search in Google Scholar

Buchter, B., Hinz, C., Flühler, H., 1994. Sample size for determination of coarse fragment content in a stony soil. Geoderma, 63, 265–275.10.1016/0016-7061(94)90068-XSearch in Google Scholar

Chen, H., Liu, J., Zhang, W., Wang, K., 2012. Soil hydraulic properties on the steep karst hillslopes in northwest Guangxi, China. Environ. Earth Sci., 66, 371–379.10.1007/s12665-011-1246-ySearch in Google Scholar

Collischonn, W., Fleischmann, A., Paiva, R.C.D., Mejia, A., 2017. Hydraulic causes for basin hydrograph skewness. Water Resour. Res., 53, 10603–10618.10.1002/2017WR021543Search in Google Scholar

Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M.A., Basile, A., 2013. Measuring and modeling water content in stony soils. Soil Till. Res., 128, 9–22.10.1016/j.still.2012.10.006Search in Google Scholar

Dane, J.H., Hopmans, J.W., 2002. Pressure plate extractor. In: Dane, J.H., Topp, G.C., (Eds.): Methods of Soil Analysis, Part 4, Physical Methods. SSSA Book Series 5, SSSA, Madison, WI, pp. 688–690.10.2136/sssabookser5.4Search in Google Scholar

Hlaváčiková, H., Novák, V., Holko, L., 2015. On the role of rock fragments and initial soil water content in the potential subsurface runoff formation. J. Hydrol. Hydromech., 63, 71–81.10.1515/johh-2015-0002Search in Google Scholar

Hlaváčiková, H., Novák, V., Šimůnek, J., 2016. The effects of rock fragment shapes and positions on modeled hydraulic conductivities of stony soils. Geoderma, 281, 39–48.10.1016/j.geoderma.2016.06.034Search in Google Scholar

Hlaváčiková, H., Novák, V., Kostka, Z., Danko, M., Hlavčo, J., 2018. The influence of stony soil properties on water dynamics modeled by the HYDRUS model. J. Hydrol. Hydromech., 66, 181–188.10.1515/johh-2017-0052Search in Google Scholar

Hlaváčiková, H., Holko, L., Danko, M., Novák, V., 2019. Estimation of macropore flow characteristics in stony soils of a small mountain catchment. J. Hydrol., 574, 1176–1187.10.1016/j.jhydrol.2019.05.009Search in Google Scholar

Holko, L., Lepistő, A., 1997. Modelling the hydrological behaviour of a mountainous catchment using TOPMODEL. J. Hydrol., 196, 361–377.10.1016/S0022-1694(96)03237-4Search in Google Scholar

Holko, L., Kostka, Z., 2010. Hydrological processes in mountains – knowledge gained in the Jalovecky Creek catchment, Slovakia. IAHS Publication, 336. IAHS Press, Wallingford, pp. 84–89.Search in Google Scholar

Holko, L., Kostka, Z., Šanda, M., 2011. Assessment of frequency and areal extent of overland flow generation in a forested mountain catchment. Soil Water Res., 6, 43–53.10.17221/33/2010-SWRSearch in Google Scholar

Holko, L., Bičárová, S., Hlavčo, J., Danko, M., Kostka, Z., 2018. Isotopic hydrograph separation in two small mountain catchments during multiple events. Cuadernos de Investigación Geográfica, 44, 2, 453–473.10.18172/cig.3344Search in Google Scholar

Holko, L., Sleziak, P., Danko, M., Bičárová, S., Pociask-Karteczka, J., 2020a. Analysis of changes in hydrological cycle of a pristine mountain catchment. 1. Hydrometric data. Journal of Hydrology and Hydromechanics, 68, 2, 180–191.10.2478/johh-2020-0010Search in Google Scholar

Holko, L., Danko, M., Sleziak, P., 2020b. Analysis of changes in hydrological cycle of a pristine mountain catchment. 2. Isotopic data, trend and attribution analyses. Journal of Hydrology and Hydromechanics, 68, 2, 192–199.10.2478/johh-2020-0011Search in Google Scholar

Kostka, Z., 2009. Runoff response to rainfall event in the mountain catchment. Acta Hydrologica Slovaca, 10, 1, 130−139. (In Slovak with English abstract.)Search in Google Scholar

Li, H., Sivapalan, M., 2011. Effect of spatial heterogeneity of runoff generation mechanisms on the scaling behavior of event runoff responses in a natural river basin. Water Resour. Res., 47, Article No. W00H08.10.1029/2010WR009712Search in Google Scholar

Ma, D.H., Shao, M.A., 2008. Simulating infiltration into stony soils with a dual-porosity model. Eur. J. Soil Sci., 59, 950–959.10.1111/j.1365-2389.2008.01055.xSearch in Google Scholar

Šimůnek, J., van Genuchten, M.T, 1996. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res., 32, 2683–2696.10.1029/96WR01525Search in Google Scholar

Šimůnek, J., Wendroth, O., van Genuchten, M.T, 1998. A parameter estimation analysis of the evaporation method for determining soil hydraulic properties. Soil Sci. Soc. Am. J., 62, 894–905.10.2136/sssaj1998.03615995006200040007xSearch in Google Scholar

Šimůnek, J., van Genuchten, M.T., Šejna, M., 2008. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J., 7, 587–600.10.2136/vzj2007.0077Search in Google Scholar

Šimůnek, J., Šejna, M., Saito, H., Sakai, M., van Genuchten, M.T., 2013. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 4.17. Department of Environmental Sciences, University of California Riverside, Riverside, CA, USA, 308 p.Search in Google Scholar

Tesař, M., Šír, M., Syrovátka, O., Pražák, J., Lichner, Ľ., Kubík, F., 2001. Soil water regime in head water regions - observation, assessment and modelling. J. Hydrol. Hydromech., 49, 6, 355–406.Search in Google Scholar

Tromp-van Meerveld, H.J., McDonnell, J.J., 2006. Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resour Res., 42, W02411. DOI: 10.1029/2004WR003800.10.1029/2004WR003800Search in Google Scholar

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 987–996.10.2136/sssaj1980.03615995004400050002xSearch in Google Scholar

Wegehenkel, M., Wagner, A., Amoriello, T., Fleck, S., Messenburg, H., 2017. Impact of stoniness correction of soil hydraulic parameters on water balance simulations of forest plots. J. Plant Nutr. Soil Sci., 180, 71–86.10.1002/jpln.201600244Search in Google Scholar

eISSN:
0042-790X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other