À propos de cet article

Citez

Agegnehu, G., Bass, A.M., Nelson, P.N., Bird, M.I., 2016. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Tot. Environ., 543, 295–306.10.1016/j.scitotenv.2015.11.05426590867Search in Google Scholar

Alburquerque, J.A., Calero, J.M., Barrón, V., Torrent, J., del Campillo, M.C., Gallardo, A., Villar, R., 2014. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J. Plant Nutr. Soil Sci., 177, 16–25.10.1002/jpln.201200652Search in Google Scholar

Atkinson, C.J., Fitzgerald, J.D., Hipps, N.A., 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil, 337, 1–18.10.1007/s11104-010-0464-5Search in Google Scholar

Bai, M., Wilske, B., Buegger, F., Esperschütz, J., Kammann, C.I., Eckhardt, C., Koestler, M., Kraft, P., Bach, M., Frede, H.G., Breuer, L., 2013. Degradation kinetics of biochar from pyrolysis and hydrothermal carbonization in temperate soils. Plant Soil, 372, 1–2, 375–387.10.1007/s11104-013-1745-6Search in Google Scholar

Barrow, C.J., 2012. Biochar: potential for countering land degradation and for improving agriculture. Appl. Geogr., 34, 21–28.10.1016/j.apgeog.2011.09.008Open DOISearch in Google Scholar

Blanco-Canqui, H., Lal, L., 2004. Mechanisms of carbon sequestration in soil aggregates. Crit. Rev. Plant Sci., 23, 481–504.10.1080/07352680490886842Open DOISearch in Google Scholar

Brodowski, S., John, B., Flessa, H., Amelung, W., 2006. Aggregate-occluded black carbon in soil. Eur. J. Soil Sci., 57, 539–546.10.1111/j.1365-2389.2006.00807.xOpen DOISearch in Google Scholar

Bronick, C.J., Lal, R., 2005. The soil structure and land management: a review. Geoderma, 124, 3–22.10.1016/j.geoderma.2004.03.005Search in Google Scholar

Butnan, S., Deenik, J.L., Toomsan, B., Antal, M.J., Vityakon, P., 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma, 237–238, 105–116.10.1016/j.geoderma.2014.08.010Search in Google Scholar

Cross, A., Zwart, K., Shackley, S., Ruysschaert, G., 2016. The role of biochar in agricultural soils. In: Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B. (Eds.): Biochar in European Soils and Agriculture. Routledge, London, New York, pp. 73–98.Search in Google Scholar

Dziadowiec, H., Gonet, S.S., 1999. Methodical Guide-Book for Soil Organic Matter Studies. Polish Society of Soil Science, Warszawa, 65 p. (In Polish.)Search in Google Scholar

Elliott, E.T., 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J., 50, 627–633.10.2136/sssaj1986.03615995005000030017xOpen DOISearch in Google Scholar

Fischer, D., Glaser, B., 2012. Synergisms between compost and biochar for sustainable soil amelioration. In: Kumar, S. (Ed.): Management of Organic Waste. In Tech Europe, Rijeka, pp. 167–198.10.5772/31200Search in Google Scholar

Green Report, 2014. Green Report for 2013. Bratislava, Národné poľnohospodárske a potravinárke centrum, 2014, 65 p., ISBN 978.80-8058-597-6.Search in Google Scholar

Herath, H.M.S.K., Camps-Arbestain, M., Hedley, M., 2013. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma, 209–210, 188–197.10.1016/j.geoderma.2013.06.016Search in Google Scholar

Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S., 2007. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res., 45, 8, 629–634.10.1071/SR07109Search in Google Scholar

Chintala, R., Owen, R., Kumar, S., Schumacher, T.E., Malo, D., 2014. Biochar impacts on denitrification under different soil water contents. World Cong. Soil Sci., 6, 157–157.Search in Google Scholar

IUSS WRB, 2014. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, FAO, Rome, 112 p.Search in Google Scholar

Jien, S.H., Wang, C.S., 2013. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110, 225–233.10.1016/j.catena.2013.06.021Search in Google Scholar

Jones, B.E.H., Haynes, R.J., Phillips, I.R., 2010. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. J. Environ. Manag., 91, 2281–2288.10.1016/j.jenvman.2010.06.013Search in Google Scholar

Keluweit, M., Nico, P.S., Johmon, N.G., Kleber, M., 2010. Dynamic molecular structure of plant biomass dried black carbon (biochar). Environ. Sci. Technol., 44, 1247–1253.10.1021/es9031419Open DOISearch in Google Scholar

Kodešová, R., Němeček, K., Žigová, A., Nikodem, A., Fér, M., 2015. Using dye tracer for visualizing roots impact on soil structure and soil porous system. Biologia, 70, 1439–1443.10.1515/biolog-2015-0166Search in Google Scholar

Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova I., Xu, X., 2009. Black carbon decomposition and incorporation into microbial biomass estimated by 14C labeling. Soil Biol. Biochem., 41, 210–219.10.1016/j.soilbio.2008.10.016Open DOISearch in Google Scholar

Lal, R., Shukla, M.K., 2004. Principles of Soil Physics. Marcel Dekker, New York, 345 p.10.4324/9780203021231Search in Google Scholar

Lehmann, J., 2007. Bio-energy in the black. Front. Ecol. Environ., 5, 381–387.10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2Open DOISearch in Google Scholar

Lehmann, J., Skjemstad, J., Sohi, S., 2008. Australian climate-carbon cycle feedback reduced by soil black carbon. Nat. Geosci., 1, 832–835.10.1038/ngeo358Search in Google Scholar

Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D., 2011. Biochar effects on soil biota - A review. Soil Biol. Biochem., 43, 9, 1812–1836.10.1016/j.soilbio.2011.04.022Open DOISearch in Google Scholar

Liang, B., Lehmann, J., Solomon, D., Kinyang, J., Grossman, J., O’Neill, B., Skjemstard, J.O., Thies, J., Luiza, F.J., Peterson, J., Neves, E.G., 2006. Black carbon increases CEC in soils. Soil Sci. Soc. Am. J., 70, 1719–1730.10.2136/sssaj2005.0383Open DOISearch in Google Scholar

Liu, C.A., Zhou, L.M., 2012. Soil organic carbon sequestration and fertility response to newly-built terraces with organic manure and mineral fertilizer in a semi-arid environment, Soil Till. Res., 172, 39–47.10.1016/j.still.2017.05.003Search in Google Scholar

Loginow, W., Wisniewski, W., Gonet, S.S., Ciescinska, B., 1987. Fractionation of organic carbon based on susceptibility to oxidation. Pol. J. Soil Sci., 20, 47–52.Search in Google Scholar

Lopez-Capel, E., Zwart, K., Shackley, S., Postma, R., Sten-strom, J., Rasse, D.P., Budai, A., Glaser, B., 2016. Biochar properties. In: Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B. (Eds.): Biochar in European Soils and Agriculture. Routledge, London, New York, pp. 41–72.Search in Google Scholar

Ma, N., Zhang, L., Zhang, Y., Yang, L., Yu, Ch., Yin, G., Doane, T.A., Wu, Z., Zhu, P., Ma, X., 2016. Biochar improves soil aggregate stability and water availability in a Mollisol after three years of field application. PLoS ONE, 11, 1–10.10.1371/journal.pone.0154091487155627191160Search in Google Scholar

Millar, C.E., Turk, L.M., Foth, H.D., 1962. Fundamentals of Soil Science. John Wiley and Sons, New York, 526 p.Search in Google Scholar

Mukherjee, A., Lal, R., 2013. Biochar impacts on soil physical properties and greenhouse gas emission. Agronomy, 3, 2, 313–339.10.3390/agronomy3020313Search in Google Scholar

Ruysschaert, G., Nelissen, V., Postma, R., Bruun, E., O’Toole, A., Hammond, J., Rödger, J.M., Hylander, L., Kihlberg, T., Zwart, K., Hauggaard-Nielsen, H., Shackley, S., 2016. Field application of pure biochar in the North Sea region and across Europe. In: Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B. (Eds.): Biochar in European Soils and Agriculture. Routledge, London, New York, pp. 99–135.Search in Google Scholar

Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., Børresen, T., 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till. Res., 155, 35–44.10.1016/j.still.2015.08.002Search in Google Scholar

Saha, D., Kukal, S.S., Sharma, S., 2011. Land use impacts on SOC fractions and aggregate stability in typic Ustochrepts of Northwest India. Plant Soil, 339, 457–470.10.1007/s11104-010-0602-0Search in Google Scholar

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res., 79, 7–31.10.1016/j.still.2004.03.008Search in Google Scholar

Six, J., Conant, R.T., Paul, E.A., Paustian, K., 2002. Stabilization mechanisms of soil organic matter: Implications for Csaturation of soils. Plant Soil, 241, 155–176.10.1023/A:1016125726789Search in Google Scholar

Spokas, K.A., 2010. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag., 1, 2, 289–303.10.4155/cmt.10.32Search in Google Scholar

Szombathová, N., 1999. The comparison of soil carbon susceptibility to oxidation by KMnO4 solutions in different farming systems. Hum. Subst. Environ., 1, 35–39.Search in Google Scholar

Šimanský, V., Jonczak, J., 2016. Water-stable aggregates as a key element in the stabilization of soil organic matter in the Chernozems. Carp. J. Earth Environ. Sci., 11, 511–517.Search in Google Scholar

Šimanský, V., Horák, J., Igaz, D., Jonczak, J., Markiewicz, M., Felber, R., Rizhiya, E.Y., Lukac, M., 2016. How dose of bio-char and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? Biologia, 71, 989–995.10.1515/biolog-2016-0122Search in Google Scholar

Šimanský, V., Jonczak, J., Parzych, A., Horák, J., 2018. Contents and bioaccumulation of nutrients from soil to corn organs after application of different biochar doses. Carp. J. Earth Environ. Sci., 13, 315–324.10.26471/cjees/2018/013/027Search in Google Scholar

Tisdall, J.M., Oades, J.M., 1980. The effect of crop rotation on aggregation in a red-brown earth. Austr. J. Soil Res., 18, 423–433.10.1071/SR9800423Search in Google Scholar

Vadjunina, A.F., Korchagina, Z.A., 1986. Methods of Study of Soil Physical Properties. Agropromizdat, Moscow, 415 p.Search in Google Scholar

Valla, M., Kozák, J., Ondráček, V., 2000. Vulnerability of aggregates separated from selected Anthrosols developed on reclaimed dumpsites. Rostl. Vyr., 46, 563–568.Search in Google Scholar

Vitkova, J., Kondrlova, E., Rodny, M., Surda, P., Horak, J., 2017. Analysis of soil water content and crop yield after bio-char application in field conditions. Plant, Soil and Environment, 63, 12, 569–573.10.17221/564/2017-PSESearch in Google Scholar

Wang, S., Zhao, X., Xing, G., Yang, L., 2013. Large-scale biochar production from crop residues: a new idea and the biogas-energy pyrolysis. Bioresources, 8, 8–11.10.15376/biores.8.1.8-11Search in Google Scholar

Yeboah, E., Ofori, P., Quansah, G.W., Dugan, E., Sohi, S.P., 2009. Improving soil productivity through biochar amendments to soils. Afr. J. Environ. Sci. Technol., 3, 34–41.Search in Google Scholar

Yuan, J.H., Xu, R.K., 2012. Effects of biochars generated from crop residues on chemical properties of acid soils from tropical and subtropical China. Soil Res., 50, 570–578.10.1071/SR12118Search in Google Scholar

eISSN:
0042-790X
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other