1. bookVolume 66 (2018): Edition 3 (September 2018)
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Calculation of critical flow depth using method of algebraic inequality

Publié en ligne: 14 Aug 2018
Volume & Edition: Volume 66 (2018) - Edition 3 (September 2018)
Pages: 316 - 322
Reçu: 23 Oct 2017
Accepté: 13 Dec 2017
Détails du magazine
License
Format
Magazine
eISSN
1338-4333
Première parution
28 Mar 2009
Périodicité
4 fois par an
Langues
Anglais

Furuichi, S., 2011. On refined Young inequalities and reverse inequalities. Journal of Mathematical Inequalities, 5, 21-31.10.7153/jmi-05-03Search in Google Scholar

Garling, D.J.H., 2012. Inequalities: A Journey into Linear Analysis. Beijing World Book Press, Beijing.Search in Google Scholar

Kincaid D., Cheney W., 2003. Numerical Analysis. Beijing Machinery Industry Press, Beijing.Search in Google Scholar

Li, F., Wen, H., Chen, X., 2010. Explicit formula of hydraulic; calculation of U-shaped channel. Advances in Science and Technology of Water Resources, 30, 1, 65-67. (In Chinese.)10.4028/www.scientific.net/AST.70.65Ouvrir le DOISearch in Google Scholar

Liu, S., Xue, J., 2016. Theoretical analysis and numerical simulation of mechanical energy loss and wall resistance of steady open channel flow. Journal of Hydrodynamics, 28, 3, 489-496.10.1016/S1001-6058(16)60653-4Ouvrir le DOISearch in Google Scholar

Sabnis, S.V., Agnihothram, G., 2006. Application of arithmetic -geometric mean inequality for construction of reliability test plan for parallel systems in the presence of covariates. Economic Quality Control, 21, 2, 219-230.10.1515/EQC.2006.219Search in Google Scholar

Swamee, P.K., 1993. Critical depth equations for irrigation canals. Journal of Irrigation and Drainage Engineering, ASCE, 119, 2, 400-409.10.1061/(ASCE)0733-9437(1993)119:2(400)Search in Google Scholar

Swamee, P.K., Rathie, P.N., 2005. Exact equations for critical depth in a trapewidal canal. Journal of Irrigation and Drainage Engineering, ASCE, 131, 5, 474-476.10.1061/(ASCE)0733-9437(2005)131:5(474)Search in Google Scholar

Swamee, P. K., Wu, S., Katopodis, C., 1999. Formula for calculating critical depth of trapezoidal open channel. Journal of Hydraulic Engineering, ASCE, 125, 7, 785-786.10.1061/(ASCE)0733-9429(1999)125:7(785.2)Search in Google Scholar

Vatankhah, A.R., 2013. Multiple critical depth occurrence in two-stage cross sections: effect of side slope change. ASCE Journal of Hydrologic Engineering, 18, 6, 722-728.10.1061/(ASCE)HE.1943-5584.0000682Ouvrir le DOISearch in Google Scholar

Wang, Z., 1998. Formula for calculating critical depth of trapezoidal open channel. Journal of Hydraulic Engineering, ASCE, 124, 1, 90-92.10.1061/(ASCE)0733-9429(1998)124:1(90)Search in Google Scholar

Wu, C., 2008. Hydraulics (Vol. 1). Beijing Higher Education Press, Beijing. (In Chinese.)Search in Google Scholar

Zhang, Z., Li, R., 2012. Research on critical water depth, Froude Number and hydraulic jump of U-shaped channel. Journal of Xi'an University of Technology, 28, 2, 198-202. (In Chinese.)Search in Google Scholar

Zhao, Y., Zhu, H., Song, S., 2009. Discuss on accurate calculation formula of critical depth of open trapezoidal channel. Journal of Yangtze River Scientific Research Institute, 2009, 04, 18-21+47. (In Chinese.).Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo